pda1.2.8 package

Privacy-Preserving Distributed Algorithms

ADAP.derive

ADAP derivatives

ADAP.estimate

ADAP surrogate estimation

ADAP.initialize

ADAP initialize

dGEM.derive

dGEM hospital-specific effect derivation

dGEM.estimate

dGEM standardized event rate estimation

dGEM.initialize

dGEM initialize

dGEM.synthesize

PDA dGEM synthesize

DLM.estimate

PDA DLM estimation

DLM.initialize

DLM initialize

DPQL.derive

DPQL derive

DPQL.estimate

PDA DPQL estimation

DPQL.initialize

DPQL initialize

getCloudConfig

gather cloud settings into a list

myglmmPQL

A flexible version of MASS::glmmPQL

ODAC.derive

Generate pda UWZ derivatives

ODAC.deriveUWZ

Generate pda UWZ summary statistics before calculating derivatives

ODAC.estimate

PDA surrogate estimation

ODAC.initialize

ODAC initialize

ODAC.synthesize

PDA synthesize surrogate estimates from all sites, optional

ODACAT.derive

ODACAT derivatives

ODACAT.estimate

PDA surrogate estimation

ODACAT.initialize

ODACAT initialize

ODACAT.synthesize

PDA synthesize surrogate estimates from all sites, optional

ODACATH.derive

ODACATH derivatives

ODACATH.estimate

PDA surrogate estimation

ODACATH.initialize

ODACATH initialize

ODACATH.synthesize

PDA synthesize surrogate estimates from all sites, optional

ODAH.derive

ODAH derivatives

ODAH.estimate

PDA surrogate estimation

ODAH.initialize

ODAH initialize

ODAL.derive

ODAL derivatives

ODAL.estimate

PDA surrogate estimation

ODAL.initialize

ODAL initialize

ODAL.synthesize

PDA synthesize surrogate estimates from all sites, optional

ODAP.derive

ODAP derivatives

ODAP.estimate

PDA surrogate estimation

ODAP.initialize

ODAP initialize

ODAPB.derive

ODAPB derivatives

ODAPB.estimate

PDA surrogate estimation

ODAPB.initialize

ODAPB initialize

pda

PDA: Privacy-preserving Distributed Algorithm

pdaGet

Function to download json and return as object

pdaList

Function to list available objects

pdaPut

Function to upload object to cloud as json

pdaSync

pda control synchronize

A collection of privacy-preserving distributed algorithms for conducting multi-site data analyses. The regression analyses can be linear regression for continuous outcome, logistic regression for binary outcome, Cox proportional hazard regression for time-to event outcome, Poisson regression for count outcome, or multi-categorical regression for nominal or ordinal outcome. The PDA algorithm runs on a lead site and only requires summary statistics from collaborating sites, with one or few iterations. The package can be used together with the online system (<https://pda-ota.pdamethods.org/>) for safe and convenient collaboration. For more information, please visit our software websites: <https://github.com/Penncil/pda>, and <https://pdamethods.org/>.

  • Maintainer: Yiwen Lu
  • License: Apache License 2.0
  • Last published: 2025-03-10