autoplot.partial function

Plotting Partial Dependence Functions

Plotting Partial Dependence Functions

Plots partial dependence functions (i.e., marginal effects) using ggplot2 graphics.

## S3 method for class 'partial' autoplot( object, center = FALSE, plot.pdp = TRUE, pdp.color = "red", pdp.size = 1, pdp.linetype = 1, rug = FALSE, smooth = FALSE, smooth.method = "auto", smooth.formula = y ~ x, smooth.span = 0.75, smooth.method.args = list(), contour = FALSE, contour.color = "white", train = NULL, xlab = NULL, ylab = NULL, main = NULL, legend.title = "yhat", ... ) ## S3 method for class 'ice' autoplot( object, center = FALSE, plot.pdp = TRUE, pdp.color = "red", pdp.size = 1, pdp.linetype = 1, rug = FALSE, train = NULL, xlab = NULL, ylab = NULL, main = NULL, ... ) ## S3 method for class 'cice' autoplot( object, plot.pdp = TRUE, pdp.color = "red", pdp.size = 1, pdp.linetype = 1, rug = FALSE, train = NULL, xlab = NULL, ylab = NULL, main = NULL, ... )

Arguments

  • object: An object that inherits from the "partial" class.
  • center: Logical indicating whether or not to produce centered ICE curves (c-ICE curves). Only useful when object represents a set of ICE curves; see partial for details. Default is FALSE.
  • plot.pdp: Logical indicating whether or not to plot the partial dependence function on top of the ICE curves. Default is TRUE.
  • pdp.color: Character string specifying the color to use for the partial dependence function when plot.pdp = TRUE. Default is "red".
  • pdp.size: Positive number specifying the line width to use for the partial dependence function when plot.pdp = TRUE. Default is 1.
  • pdp.linetype: Positive number specifying the line type to use for the partial dependence function when plot.pdp = TRUE. Default is 1.
  • rug: Logical indicating whether or not to include rug marks on the predictor axes. Default is FALSE.
  • smooth: Logical indicating whether or not to overlay a LOESS smooth. Default is FALSE.
  • smooth.method: Character string specifying the smoothing method (function) to use (e.g., "auto", "lm", "glm", "gam", "loess", or "rlm"). Default is "auto". See geom_smooth for details.
  • smooth.formula: Formula to use in smoothing function (e.g., y ~ x, y ~ poly(x, 2), or y ~ log(x)).
  • smooth.span: Controls the amount of smoothing for the default loess smoother. Smaller numbers produce wigglier lines, larger numbers produce smoother lines. Default is 0.75.
  • smooth.method.args: List containing additional arguments to be passed on to the modeling function defined by smooth.method.
  • contour: Logical indicating whether or not to add contour lines to the level plot.
  • contour.color: Character string specifying the color to use for the contour lines when contour = TRUE. Default is "white".
  • train: Data frame containing the original training data. Only required if rug = TRUE or chull = TRUE.
  • xlab: Character string specifying the text for the x-axis label.
  • ylab: Character string specifying the text for the y-axis label.
  • main: Character string specifying the text for the main title of the plot.
  • legend.title: Character string specifying the text for the legend title. Default is "yhat".
  • ...: Additional (optional) arguments to be passed onto geom_line, geom_point, or scale_fill_viridis_c.

Returns

A "ggplot" object.

Examples

## Not run: # # Regression example (requires randomForest package to run) # # Load required packages library(ggplot2) # for autoplot() generic library(gridExtra) # for `grid.arrange()` library(magrittr) # for forward pipe operator `%>%` library(randomForest) # Fit a random forest to the Boston housing data data (boston) # load the boston housing data set.seed(101) # for reproducibility boston.rf <- randomForest(cmedv ~ ., data = boston) # Partial dependence of cmedv on lstat boston.rf %>% partial(pred.var = "lstat") %>% autoplot(rug = TRUE, train = boston) + theme_bw() # Partial dependence of cmedv on lstat and rm boston.rf %>% partial(pred.var = c("lstat", "rm"), chull = TRUE, progress = TRUE) %>% autoplot(contour = TRUE, legend.title = "cmedv", option = "B", direction = -1) + theme_bw() # ICE curves and c-ICE curves age.ice <- partial(boston.rf, pred.var = "lstat", ice = TRUE) grid.arrange( autoplot(age.ice, alpha = 0.1), # ICE curves autoplot(age.ice, center = TRUE, alpha = 0.1), # c-ICE curves ncol = 2 ) ## End(Not run)
  • Maintainer: Brandon M. Greenwell
  • License: GPL (>= 2)
  • Last published: 2024-10-28