Plots partial dependence functions (i.e., marginal effects) using ggplot2 graphics.
## S3 method for class 'partial'autoplot( object, center =FALSE, plot.pdp =TRUE, pdp.color ="red", pdp.size =1, pdp.linetype =1, rug =FALSE, smooth =FALSE, smooth.method ="auto", smooth.formula = y ~ x, smooth.span =0.75, smooth.method.args = list(), contour =FALSE, contour.color ="white", train =NULL, xlab =NULL, ylab =NULL, main =NULL, legend.title ="yhat",...)## S3 method for class 'ice'autoplot( object, center =FALSE, plot.pdp =TRUE, pdp.color ="red", pdp.size =1, pdp.linetype =1, rug =FALSE, train =NULL, xlab =NULL, ylab =NULL, main =NULL,...)## S3 method for class 'cice'autoplot( object, plot.pdp =TRUE, pdp.color ="red", pdp.size =1, pdp.linetype =1, rug =FALSE, train =NULL, xlab =NULL, ylab =NULL, main =NULL,...)
Arguments
object: An object that inherits from the "partial" class.
center: Logical indicating whether or not to produce centered ICE curves (c-ICE curves). Only useful when object represents a set of ICE curves; see partial for details. Default is FALSE.
plot.pdp: Logical indicating whether or not to plot the partial dependence function on top of the ICE curves. Default is TRUE.
pdp.color: Character string specifying the color to use for the partial dependence function when plot.pdp = TRUE. Default is "red".
pdp.size: Positive number specifying the line width to use for the partial dependence function when plot.pdp = TRUE. Default is 1.
pdp.linetype: Positive number specifying the line type to use for the partial dependence function when plot.pdp = TRUE. Default is 1.
rug: Logical indicating whether or not to include rug marks on the predictor axes. Default is FALSE.
smooth: Logical indicating whether or not to overlay a LOESS smooth. Default is FALSE.
smooth.method: Character string specifying the smoothing method (function) to use (e.g., "auto", "lm", "glm", "gam", "loess", or "rlm"). Default is "auto". See geom_smooth for details.
smooth.formula: Formula to use in smoothing function (e.g., y ~ x, y ~ poly(x, 2), or y ~ log(x)).
smooth.span: Controls the amount of smoothing for the default loess smoother. Smaller numbers produce wigglier lines, larger numbers produce smoother lines. Default is 0.75.
smooth.method.args: List containing additional arguments to be passed on to the modeling function defined by smooth.method.
contour: Logical indicating whether or not to add contour lines to the level plot.
contour.color: Character string specifying the color to use for the contour lines when contour = TRUE. Default is "white".
train: Data frame containing the original training data. Only required if rug = TRUE or chull = TRUE.
xlab: Character string specifying the text for the x-axis label.
ylab: Character string specifying the text for the y-axis label.
main: Character string specifying the text for the main title of the plot.
legend.title: Character string specifying the text for the legend title. Default is "yhat".
...: Additional (optional) arguments to be passed onto geom_line, geom_point, or scale_fill_viridis_c.
Returns
A "ggplot" object.
Examples
## Not run:## Regression example (requires randomForest package to run)## Load required packageslibrary(ggplot2)# for autoplot() genericlibrary(gridExtra)# for `grid.arrange()`library(magrittr)# for forward pipe operator `%>%`library(randomForest)# Fit a random forest to the Boston housing datadata (boston)# load the boston housing dataset.seed(101)# for reproducibilityboston.rf <- randomForest(cmedv ~ ., data = boston)# Partial dependence of cmedv on lstatboston.rf %>% partial(pred.var ="lstat")%>% autoplot(rug =TRUE, train = boston)+ theme_bw()# Partial dependence of cmedv on lstat and rmboston.rf %>% partial(pred.var = c("lstat","rm"), chull =TRUE, progress =TRUE)%>% autoplot(contour =TRUE, legend.title ="cmedv", option ="B", direction =-1)+ theme_bw()# ICE curves and c-ICE curvesage.ice <- partial(boston.rf, pred.var ="lstat", ice =TRUE)grid.arrange( autoplot(age.ice, alpha =0.1),# ICE curves autoplot(age.ice, center =TRUE, alpha =0.1),# c-ICE curves ncol =2)## End(Not run)