check_heteroscedasticity function

Check model for (non-)constant error variance

Check model for (non-)constant error variance

Significance testing for linear regression models assumes that the model errors (or residuals) have constant variance. If this assumption is violated the p-values from the model are no longer reliable.

check_heteroscedasticity(x, ...) check_heteroskedasticity(x, ...)

Arguments

  • x: A model object.
  • ...: Currently not used.

Returns

The p-value of the test statistics. A p-value < 0.05 indicates a non-constant variance (heteroskedasticity).

Details

This test of the hypothesis of (non-)constant error is also called Breusch-Pagan test (1979 ).

Note

There is also a c("list("plot()")", "-method")

implemented in the c("list("see")", "-package").

Examples

m <<- lm(mpg ~ wt + cyl + gear + disp, data = mtcars) check_heteroscedasticity(m) # plot results if (require("see")) { x <- check_heteroscedasticity(m) plot(x) }

References

Breusch, T. S., and Pagan, A. R. (1979) A simple test for heteroscedasticity and random coefficient variation. Econometrica 47, 1287-1294.

See Also

Other functions to check model assumptions and and assess model quality: check_autocorrelation(), check_collinearity(), check_convergence(), check_homogeneity(), check_model(), check_outliers(), check_overdispersion(), check_predictions(), check_singularity(), check_zeroinflation()

  • Maintainer: Daniel Lüdecke
  • License: GPL-3
  • Last published: 2025-01-15