Imputation permutation group-sequential log-rank test. Random permutations of a block a reused in all later stages. This automatically results in blockwise permutations.
nextStage(pgs.obj, alpha, formula, data = parent.frame())
Arguments
pgs.obj: permGS object as returned by createPermGS
alpha: alpha at current stage
formula: a formula object, as used by coxph, left hand side must be a 'Surv' object, right hand side must only consist of a factor (treatment indicator) and optionally a special strata() term identifying the permutation strata
data: a data.frame or list containing the variables in "formula", by default "formula" is evaluated in the parent frame
Returns
An updated permGS object.
Examples
## Two-stage design with one-sided O'Brien-Fleming boundaries using IPZ methodx <- createPermGS(1000,TRUE,"IPZ")t1 <-9## calendar time of interim analysist2 <-18## calendar time of final analysisT <- rexp(100)## event timesR <- runif(100,0,12)## recruitment timesZ <- rbinom(100,1,0.5)## treatment assignmentC <- rexp(100)## drop-out times## Stage 1 datadata.t1 <- data.frame(time=pmin(T, C, max(0,(t1-R))), status=(T<=pmin(C, t1-R)), trt=Z)data.t1 <- data.t1[R <= t1,]## Stage 2 datadata.t2 <- data.frame(time=pmin(T, C, max(0,(t2-R))), status=(T<=pmin(C, t2-R)), trt=Z)data.t2 <- data.t2[R <= t2,]x <- nextStage(x,0.00153, Surv(time, status)~ trt, data.t1)summary(x)if(!x$results$reject[1]){ data.t2$strata <- rep.int(c(1,2), c(nrow(data.t1), nrow(data.t2)-nrow(data.t1))) x <- nextStage(x,0.025, Surv(time, status)~ trt + strata(strata), data.t2) summary(x)}