crossfit: A logical value indicating whether to use cross-fitting (TRUE) or not (FALSE). Cross-fitting is more computationally intensive, but helps to prevent overfitting, see Chernozhukov, et al. (2018)
nfolds.crossfit: An integer specifying the number of folds to use for cross-fitting. Must be greater than 1
cv.glmnet.args: A list of NAMED arguments to pass to the cv.glmnet function. For example, cv.glmnet.args = list(type.measure = "mse", nfolds = 10). See cv.glmnet and glmnet
for all possible options.
Returns
A function which can be passed to the augment.func argument of the fit.subgroup function.
Chernozhukov, V., Chetverikov, D., Demirer, M., Duflo, E., Hansen, C., Newey, W., & Robins, J. (2018). Double/debiased machine learning for treatment and structural parameters https://arxiv.org/abs/1608.00060
See Also
fit.subgroup for estimating ITRs and create.propensity.function for creation of propensity functions