Summarizes covariate values within the estimated subgroups
summarize.subgroups(x,...)## Default S3 method:summarize.subgroups(x, subgroup,...)## S3 method for class 'subgroup_fitted'summarize.subgroups(x,...)
Arguments
x: a fitted object from fit.subgroup() or a matrix of covariate values
...: optional arguments to summarize.subgroups methods
subgroup: vector of indicators of same length as the number of rows in x if x is a matrix. A value of 1 in the ith position of subgroup indicates patient i is in the subgroup of patients recommended the treatment and a value of 0 in the ith position of subgroup indicates patient i is in the subgroup of patients recommended the control. If x is a fitted object returned by fit.subgroup(), subgroup is not needed.
Details
The p-values shown are raw p-values and are not adjusted for multiple comparisons.
Examples
library(personalized)set.seed(123)n.obs <-1000n.vars <-50x <- matrix(rnorm(n.obs * n.vars, sd =3), n.obs, n.vars)# simulate non-randomized treatmentxbetat <-0.5+0.5* x[,21]-0.5* x[,41]trt.prob <- exp(xbetat)/(1+ exp(xbetat))trt01 <- rbinom(n.obs,1, prob = trt.prob)trt <-2* trt01 -1# simulate responsedelta <-2*(0.5+ x[,2]- x[,3]- x[,11]+ x[,1]* x[,12])xbeta <- x[,1]+ x[,11]-2* x[,12]^2+ x[,13]xbeta <- xbeta + delta * trt
# continuous outcomesy <- drop(xbeta)+ rnorm(n.obs, sd =2)# create function for fitting propensity score modelprop.func <-function(x, trt){# fit propensity score model propens.model <- cv.glmnet(y = trt, x = x, family ="binomial") pi.x <- predict(propens.model, s ="lambda.min", newx = x, type ="response")[,1] pi.x
}subgrp.model <- fit.subgroup(x = x, y = y, trt = trt01, propensity.func = prop.func, loss ="sq_loss_lasso", nfolds =5)# option for cv.glmnetcomp <- summarize.subgroups(subgrp.model)print(comp, p.value =0.01)# or we can simply supply the matrix x and the subgroupscomp2 <- summarize.subgroups(x, subgroup =1*(subgrp.model$benefit.scores >0))print(comp2, p.value =0.01)
See Also
fit.subgroup for function which fits subgroup identification models and print.subgroup_summary for arguments for printing options for summarize.subgroups().