where at∣t−1 and bt∣t−1 are estimated as it is shown in pgam.filter.
Returns
List containing log-likelihood value, optimum linear predictor and the gamma parameters vectors.
References
Harvey, A. C., Fernandes, C. (1989) Time series models for count data or qualitative observations. Journal of Business and Economic Statistics, 7(4):407--417
Harvey, A. C. (1990) Forecasting, structural time series models and the Kalman Filter. Cambridge, New York
Junger, W. L. (2004) Semiparametric Poisson-Gamma models: a roughness penalty approach. MSc Dissertation. Rio de Janeiro, PUC-Rio, Department of Electrical Engineering.