sample_parameters_uniformly function

sample_parameters_uniformly

sample_parameters_uniformly

Sample parameter vectors using uniform sampling

Each parameter value will be randomly sampled from a uniform distribution with the bounds being estimate ± estimate * fraction.

sample_parameters_uniformly( model, parameter_estimates, fraction = 0.1, force_posdef_samples = NULL, n = 1, seed = NULL, scale = "normal" )

Arguments

  • model: (Model) Pharmpy model
  • parameter_estimates: (array) Parameter estimates for parameters to use
  • fraction: (numeric) Fraction of estimate value to use for distribution bounds
  • force_posdef_samples: (numeric (optional)) Number of samples to reject before forcing variability parameters to give positive definite covariance matrices.
  • n: (numeric) Number of samples
  • seed: (numeric (optional)) Random number generator or seed
  • scale: (str) Scale to perform sampling on. Valid options are 'normal' and 'UCP'

Returns

(data.frame) samples

Examples

## Not run: model <- load_example_model("pheno") results <- load_example_modelfit_results("pheno") rng <- create_rng(23) pe <- results$parameter_estimates sample_parameters_uniformly(model, pe, n=3, seed=rng) ## End(Not run)

See Also

sample_parameters_from_covariance_matrix : Sample parameter vectors using the

uncertainty covariance matrix

sample_individual_estimates : Sample individual estiates given their covariance

  • Maintainer: Rikard Nordgren
  • License: LGPL (>= 3)
  • Last published: 2024-12-04