set_proportional_error_model function

set_proportional_error_model

set_proportional_error_model

Set a proportional error model. Initial estimate for new sigma is 0.09.

The error function being applied depends on the data transformation.

+------------------------+----------------------------------------+ | Data transformation | Proportional error | +========================+========================================+ | (equation could not be rendered, see API doc on website) +------------------------+----------------------------------------+ | (equation could not be rendered, see API doc on website) +------------------------+----------------------------------------+

set_proportional_error_model( model, dv = NULL, data_trans = NULL, zero_protection = TRUE )

Arguments

  • model: (Model) Set error model for this model
  • dv: (str or Expr or numeric (optional)) Name or DVID of dependent variable. NULL for the default (first or only)
  • data_trans: (numeric or str or Expr (optional)) A data transformation expression or NULL (default) to use the transformation specified by the model.
  • zero_protection: (logical) Set to TRUE to add code protecting from IPRED=0

Returns

(Model) Pharmpy model object

Examples

## Not run: model <- remove_error_model(load_example_model("pheno")) model <- set_proportional_error_model(model) model$statements$after_odes model <- remove_error_model(load_example_model("pheno")) model <- set_proportional_error_model( model, data_trans="log(Y)" model$statements$after_odes ## End(Not run)

See Also

set_additive_error_model : Additive error model

set_combined_error_model : Combined error model

  • Maintainer: Rikard Nordgren
  • License: LGPL (>= 3)
  • Last published: 2024-12-04