Set a proportional error model. Initial estimate for new sigma is 0.09.
The error function being applied depends on the data transformation.
+------------------------+----------------------------------------+ | Data transformation | Proportional error | +========================+========================================+ | (equation could not be rendered, see API doc on website) +------------------------+----------------------------------------+ | (equation could not be rendered, see API doc on website) +------------------------+----------------------------------------+
set_proportional_error_model( model, dv =NULL, data_trans =NULL, zero_protection =TRUE)
Arguments
model: (Model) Set error model for this model
dv: (str or Expr or numeric (optional)) Name or DVID of dependent variable. NULL for the default (first or only)
data_trans: (numeric or str or Expr (optional)) A data transformation expression or NULL (default) to use the transformation specified by the model.
zero_protection: (logical) Set to TRUE to add code protecting from IPRED=0
Returns
(Model) Pharmpy model object
Examples
## Not run:model <- remove_error_model(load_example_model("pheno"))model <- set_proportional_error_model(model)model$statements$after_odes
model <- remove_error_model(load_example_model("pheno"))model <- set_proportional_error_model( model, data_trans="log(Y)"model$statements$after_odes
## End(Not run)