cima function

Calculating Confidence Intervals

Calculating Confidence Intervals

This function calculates confidence intervals.

cima(y, se, v = NULL, alpha = 0.05, method = c("boot", "DL", "HK", "SJ", "KR", "APX", "PL", "BC"), B = 25000, parallel = FALSE, seed = NULL, maxit1 = 1e+05, eps = 10^(-10), lower = 0, upper = 1000, maxit2 = 1000, tol = .Machine$double.eps^0.25, rnd = NULL, maxiter = 100)

Arguments

  • y: the effect size estimates vector

  • se: the within studies standard errors vector

  • v: the within studies variance estimates vector

  • alpha: the alpha level of the prediction interval

  • method: the calculation method for the pretiction interval (default = "boot").

    • boot: A parametric bootstrap confidence interval (Nagashima et al., 2018).
    • DL: A Wald-type t-distribution confidence interval (the DerSimonian & Laird estimator for τ2\tau^2 with an approximate variance estimator for the average effect, (1/w^i)1(1/\sum{\hat{w}_i})^{-1}, df=K1df=K-1).
    • HK: A Wald-type t-distribution confidence interval (the REML estimator for τ2\tau^2 with the Hartung (1999)'s varance estimator [the Hartung and Knapp (2001)'s estimator] for the average effect, df=K1df=K-1).
    • SJ: A Wald-type t-distribution confidence interval (the REML estimator for τ2\tau^2 with the Sidik and Jonkman (2006)'s bias coreccted SE estimator for the average effect, df=K1df=K-1).
    • KR: Partlett--Riley (2017) confidence interval / (the REML estimator for τ2\tau^2 with the Kenward and Roger (1997)'s approach for the average effect, df=νdf=\nu).
    • APX: A Wald-type t-distribution confidence interval / (the REML estimator for τ2\tau^2 with an approximate variance estimator for the average effect, df=K1df=K-1).
    • PL: Profile likelihood confidence interval (Hardy & Thompson, 1996).
    • BC: Profile likelihood confidence interval with Bartlett-type correction (Noma, 2011).
  • B: the number of bootstrap samples

  • parallel: the number of threads used in parallel computing, or FALSE that means single threading

  • seed: set the value of random seed

  • maxit1: the maximum number of iteration for the exact distribution function of QQ

  • eps: the desired level of accuracy for the exact distribution function of QQ

  • lower: the lower limit of random numbers of τ2\tau^2

  • upper: the lower upper of random numbers of τ2\tau^2

  • maxit2: the maximum number of iteration for numerical inversions

  • tol: the desired level of accuracy for numerical inversions

  • rnd: a vector of random numbers from the exact distribution of τ2\tau^2

  • maxiter: the maximum number of iteration for REML estimation

Returns

  • K: the number of studies.
  • muhat: the average treatment effect estimate μ^\hat{\mu}.
  • lci, uci: the lower and upper confidence limits μ^l\hat{\mu}_l and μ^u\hat{\mu}_u.
  • tau2h: the estimate for τ2\tau^2.
  • i2h: the estimate for I2I^2.
  • nuc: degrees of freedom for the confidence interval.
  • vmuhat: the variance estimate for μ^\hat{\mu}.

Details

Excellent reviews of heterogeneity variance estimation have been published (e.g., Veroniki, et al., 2018).

Examples

data(sbp, package = "pimeta") set.seed(20161102) # Nagashima-Noma-Furukawa confidence interval pimeta::cima(sbp$y, sbp$sigmak, seed = 3141592) # A Wald-type t-distribution confidence interval # An approximate variance estimator & DerSimonian-Laird estimator for tau^2 pimeta::cima(sbp$y, sbp$sigmak, method = "DL") # A Wald-type t-distribution confidence interval # The Hartung variance estimator & REML estimator for tau^2 pimeta::cima(sbp$y, sbp$sigmak, method = "HK") # A Wald-type t-distribution confidence interval # The Sidik-Jonkman variance estimator & REML estimator for tau^2 pimeta::cima(sbp$y, sbp$sigmak, method = "SJ") # A Wald-type t-distribution confidence interval # The Kenward-Roger approach & REML estimator for tau^2 pimeta::cima(sbp$y, sbp$sigmak, method = "KR") # A Wald-type t-distribution confidence interval # An approximate variance estimator & REML estimator for tau^2 pimeta::cima(sbp$y, sbp$sigmak, method = "APX") # Profile likelihood confidence interval # Maximum likelihood estimators of variance for the average effect & tau^2 pimeta::cima(sbp$y, sbp$sigmak, method = "PL") # Profile likelihood confidence interval with a Bartlett-type correction # Maximum likelihood estimators of variance for the average effect & tau^2 pimeta::cima(sbp$y, sbp$sigmak, method = "BC")

References

Veroniki, A. A., Jackson, D., Bender, R., Kuss, O., Langan, D., Higgins, J. P. T., Knapp, G., and Salanti, J. (2016). Methods to calculate uncertainty in the estimated overall effect size from a random-effects meta-analysis Res Syn Meth.

In press. https://doi.org/10.1002/jrsm.1319.

Nagashima, K., Noma, H., and Furukawa, T. A. (2018). Prediction intervals for random-effects meta-analysis: a confidence distribution approach. Stat Methods Med Res. In press. https://doi.org/10.1177/0962280218773520.

Higgins, J. P. T, Thompson, S. G., Spiegelhalter, D. J. (2009). A re-evaluation of random-effects meta-analysis. J R Stat Soc Ser A Stat Soc.

172 (1): 137-159. https://doi.org/10.1111/j.1467-985X.2008.00552.x

Partlett, C, and Riley, R. D. (2017). Random effects meta-analysis: Coverage performance of 95

confidence and prediction intervals following REML estimation. Stat Med.

36 (2): 301-317. https://doi.org/10.1002/sim.7140

Hartung, J., and Knapp, G. (2001). On tests of the overall treatment effect in meta-analysis with normally distributed responses. Stat Med.

20 (12): 1771-1782. https://doi.org/10.1002/sim.791

Sidik, K., and Jonkman, J. N. (2006). Robust variance estimation for random effects meta-analysis. Comput Stat Data Anal.

50 (12): 3681-3701. https://doi.org/10.1016/j.csda.2005.07.019

Noma H. (2011) Confidence intervals for a random-effects meta-analysis based on Bartlett-type corrections. Stat Med.

30 (28): 3304-3312. https://doi.org/10.1002/sim.4350

See Also

pima

  • Maintainer: Kengo Nagashima
  • License: GPL-3
  • Last published: 2019-09-17

Useful links