cima(y, se, v =NULL, alpha =0.05, method = c("boot","DL","HK","SJ","KR","APX","PL","BC"), B =25000, parallel =FALSE, seed =NULL, maxit1 =1e+05, eps =10^(-10), lower =0, upper =1000, maxit2 =1000, tol = .Machine$double.eps^0.25, rnd =NULL, maxiter =100)
Arguments
y: the effect size estimates vector
se: the within studies standard errors vector
v: the within studies variance estimates vector
alpha: the alpha level of the prediction interval
method: the calculation method for the pretiction interval (default = "boot").
boot: A parametric bootstrap confidence interval (Nagashima et al., 2018).
DL: A Wald-type t-distribution confidence interval (the DerSimonian & Laird estimator for τ2 with an approximate variance estimator for the average effect, (1/∑w^i)−1, df=K−1).
HK: A Wald-type t-distribution confidence interval (the REML estimator for τ2 with the Hartung (1999)'s varance estimator [the Hartung and Knapp (2001)'s estimator] for the average effect, df=K−1).
SJ: A Wald-type t-distribution confidence interval (the REML estimator for τ2 with the Sidik and Jonkman (2006)'s bias coreccted SE estimator for the average effect, df=K−1).
KR: Partlett--Riley (2017) confidence interval / (the REML estimator for τ2 with the Kenward and Roger (1997)'s approach for the average effect, df=ν).
APX: A Wald-type t-distribution confidence interval / (the REML estimator for τ2 with an approximate variance estimator for the average effect, df=K−1).
BC: Profile likelihood confidence interval with Bartlett-type correction (Noma, 2011).
B: the number of bootstrap samples
parallel: the number of threads used in parallel computing, or FALSE that means single threading
seed: set the value of random seed
maxit1: the maximum number of iteration for the exact distribution function of Q
eps: the desired level of accuracy for the exact distribution function of Q
lower: the lower limit of random numbers of τ2
upper: the lower upper of random numbers of τ2
maxit2: the maximum number of iteration for numerical inversions
tol: the desired level of accuracy for numerical inversions
rnd: a vector of random numbers from the exact distribution of τ2
maxiter: the maximum number of iteration for REML estimation
Returns
K: the number of studies.
muhat: the average treatment effect estimate μ^.
lci, uci: the lower and upper confidence limits μ^l and μ^u.
tau2h: the estimate for τ2.
i2h: the estimate for I2.
nuc: degrees of freedom for the confidence interval.
vmuhat: the variance estimate for μ^.
Details
Excellent reviews of heterogeneity variance estimation have been published (e.g., Veroniki, et al., 2018).
Examples
data(sbp, package ="pimeta")set.seed(20161102)# Nagashima-Noma-Furukawa confidence intervalpimeta::cima(sbp$y, sbp$sigmak, seed =3141592)# A Wald-type t-distribution confidence interval# An approximate variance estimator & DerSimonian-Laird estimator for tau^2pimeta::cima(sbp$y, sbp$sigmak, method ="DL")# A Wald-type t-distribution confidence interval# The Hartung variance estimator & REML estimator for tau^2pimeta::cima(sbp$y, sbp$sigmak, method ="HK")# A Wald-type t-distribution confidence interval# The Sidik-Jonkman variance estimator & REML estimator for tau^2pimeta::cima(sbp$y, sbp$sigmak, method ="SJ")# A Wald-type t-distribution confidence interval# The Kenward-Roger approach & REML estimator for tau^2pimeta::cima(sbp$y, sbp$sigmak, method ="KR")# A Wald-type t-distribution confidence interval# An approximate variance estimator & REML estimator for tau^2pimeta::cima(sbp$y, sbp$sigmak, method ="APX")# Profile likelihood confidence interval# Maximum likelihood estimators of variance for the average effect & tau^2pimeta::cima(sbp$y, sbp$sigmak, method ="PL")# Profile likelihood confidence interval with a Bartlett-type correction# Maximum likelihood estimators of variance for the average effect & tau^2pimeta::cima(sbp$y, sbp$sigmak, method ="BC")
References
Veroniki, A. A., Jackson, D., Bender, R., Kuss, O., Langan, D., Higgins, J. P. T., Knapp, G., and Salanti, J. (2016). Methods to calculate uncertainty in the estimated overall effect size from a random-effects meta-analysis Res Syn Meth.
Nagashima, K., Noma, H., and Furukawa, T. A. (2018). Prediction intervals for random-effects meta-analysis: a confidence distribution approach. Stat Methods Med Res. In press. https://doi.org/10.1177/0962280218773520.
Higgins, J. P. T, Thompson, S. G., Spiegelhalter, D. J. (2009). A re-evaluation of random-effects meta-analysis. J R Stat Soc Ser A Stat Soc.