This function can estimate prediction intervals (PIs) as follows: A parametric bootstrap PI based on confidence distribution (Nagashima et al., 2018). A parametric bootstrap confidence interval is also calculated based on the same sampling method for bootstrap PI. The Higgins--Thompson--Spiegelhalter (2009) prediction interval. The Partlett--Riley (2017) prediction intervals.
pima(y, se, v =NULL, alpha =0.05, method = c("boot","HTS","HK","SJ","KR","CL","APX"), B =25000, parallel =FALSE, seed =NULL, maxit1 =1e+05, eps =10^(-10), lower =0, upper =1000, maxit2 =1000, tol = .Machine$double.eps^0.25, rnd =NULL, maxiter =100)
Arguments
y: the effect size estimates vector
se: the within studies standard error estimates vector
v: the within studies variance estimates vector
alpha: the alpha level of the prediction interval
method: the calculation method for the pretiction interval (default = "boot").
boot: A parametric bootstrap prediction interval (Nagashima et al., 2018).
HTS: the Higgins--Thompson--Spiegelhalter (2009) prediction interval / (the DerSimonian & Laird estimator for τ2 with an approximate variance estimator for the average effect, (1/∑w^i)−1, df=K−2).
HK: Partlett--Riley (2017) prediction interval (the REML estimator for τ2 with the Hartung (1999)'s variance estimator [the Hartung and Knapp (2001)'s estimator] for the average effect, df=K−2).
SJ: Partlett--Riley (2017) prediction interval / (the REML estimator for τ2 with the Sidik and Jonkman (2006)'s bias coreccted variance estimator for the average effect, df=K−2).
KR: Partlett--Riley (2017) prediction interval / (the REML estimator for τ2 with the Kenward and Roger (1997)'s approach for the average effect, df=ν−1).
APX: Partlett--Riley (2017) prediction interval / (the REML estimator for τ2 with an approximate variance estimator for the average effect, df=K−2).
B: the number of bootstrap samples
parallel: the number of threads used in parallel computing, or FALSE that means single threading
seed: set the value of random seed
maxit1: the maximum number of iteration for the exact distribution function of Q
eps: the desired level of accuracy for the exact distribution function of Q
lower: the lower limit of random numbers of τ2
upper: the upper limit of random numbers of τ2
maxit2: the maximum number of iteration for numerical inversions
tol: the desired level of accuracy for numerical inversions
rnd: a vector of random numbers from the exact distribution of τ2
maxiter: the maximum number of iteration for REML estimation
Returns
K: the number of studies.
muhat: the average treatment effect estimate μ^.
lci, uci: the lower and upper confidence limits μ^l and μ^u.
lpi, upi: the lower and upper prediction limits c^l and c^u.
tau2h: the estimate for τ2.
i2h: the estimate for I2.
nup: degrees of freedom for the prediction interval.
nuc: degrees of freedom for the confidence interval.
vmuhat: the variance estimate for μ^.
Details
The functions bootPI, pima_boot, pima_hts, htsdl, pima_htsreml, htsreml
are deprecated, and integrated to the pima function.
Examples
data(sbp, package ="pimeta")# Nagashima-Noma-Furukawa prediction interval# is sufficiently accurate when I^2 >= 10% and K >= 3pimeta::pima(sbp$y, sbp$sigmak, seed =3141592, parallel =4)# Higgins-Thompson-Spiegelhalter prediction interval and# Partlett-Riley prediction intervals# are accurate when I^2 > 30% and K > 25pimeta::pima(sbp$y, sbp$sigmak, method ="HTS")pimeta::pima(sbp$y, sbp$sigmak, method ="HK")pimeta::pima(sbp$y, sbp$sigmak, method ="SJ")pimeta::pima(sbp$y, sbp$sigmak, method ="KR")pimeta::pima(sbp$y, sbp$sigmak, method ="APX")
References
Higgins, J. P. T, Thompson, S. G., Spiegelhalter, D. J. (2009). A re-evaluation of random-effects meta-analysis. J R Stat Soc Ser A Stat Soc.
Nagashima, K., Noma, H., and Furukawa, T. A. (2018). Prediction intervals for random-effects meta-analysis: a confidence distribution approach. Stat Methods Med Res. In press. https://doi.org/10.1177/0962280218773520.
Hartung, J. (1999). An alternative method for meta-analysis. Biom J.