pwchisq function

The Distribution of a Positive Linear Combination of Chiqaure Random Variables

The Distribution of a Positive Linear Combination of Chiqaure Random Variables

The cumulative distribution function for the distribution of a positive linear combination of χ2\chi^2 random variables with the weights (λ1,,λK\lambda_1, \ldots, \lambda_K), degrees of freedom (ν1,,νK\nu_1, \ldots, \nu_K), and non-centrality parameters (δ1,,δK\delta_1, \ldots, \delta_K).

pwchisq(x, lambda = 1, nu = 1, delta = 0, mode = 1, maxit1 = 1e+05, eps = 10^(-10))

Arguments

  • x: numeric; value of x > 0 (P[Xx]P[X \le x]).
  • lambda: numeric vector; weights (λ1,,λK\lambda_1, \ldots, \lambda_K).
  • nu: integer vector; degrees of freedom (ν1,,νK\nu_1, \ldots, \nu_K).
  • delta: numeric vector; non-centrality parameters (δ1,,δK\delta_1, \ldots, \delta_K).
  • mode: numeric; the mode of calculation (see Farabrother, 1984)
  • maxit1: integer; the maximum number of iteration.
  • eps: numeric; the desired level of accuracy.

Returns

  • prob: the distribution function.

Examples

# Table 1 of Farabrother (1984) # Q6 (The taget values are 0.0061, 0.5913, and 0.9779) pimeta::pwchisq( 20, lambda = c(7,3), nu = c(6,2), delta = c(6,2)) pimeta::pwchisq(100, lambda = c(7,3), nu = c(6,2), delta = c(6,2)) pimeta::pwchisq(200, lambda = c(7,3), nu = c(6,2), delta = c(6,2)) # [1] 0.006117973 # [1] 0.5913421 # [1] 0.9779184

References

Farebrother, R. W. (1984). Algorithm AS 204: the distribution of a positive linear combination of χ2\chi^2 random variables. J R Stat Soc Ser C Appl Stat.

33 (3): 332--339. https://rss.onlinelibrary.wiley.com/doi/10.2307/2347721.

  • Maintainer: Kengo Nagashima
  • License: GPL-3
  • Last published: 2019-09-17

Useful links