PIQP Solver
Solves [REMOVE_ME]
s.t. [REMOVE_ME]
[REMOVE_ME]
[REMOVE_ME]
for real matrices P (nxn, positive semidefinite), A (pxn) with m number of equality constraints, and G (mxn) with m number of inequality constraints
solve_piqp( P = NULL, c = NULL, A = NULL, b = NULL, G = NULL, h = NULL, x_lb = NULL, x_ub = NULL, settings = list(), backend = c("auto", "sparse", "dense") )
P
: dense or sparse matrix of class dgCMatrix or coercible into such, must be positive semidefinite
c
: numeric vector
A
: dense or sparse matrix of class dgCMatrix or coercible into such
b
: numeric vector
G
: dense or sparse matrix of class dgCMatrix or coercible into such
h
: numeric vector
x_lb
: a numeric vector of lower bounds, default NULL
indicating -Inf
for all variables, otherwise should be number of variables long
x_ub
: a numeric vector of upper bounds, default NULL
indicating Inf
for all variables, otherwise should be number of variables long
settings
: list with optimization parameters, empty by default; see piqp_settings()
for a comprehensive list of parameters that may be used
backend
: which backend to use, if auto and P, A or G are sparse then sparse backend is used ("auto"
, "sparse"
or "dense"
) ("auto"
)
A list with elements solution elements
Solves
s.t.
for real matrices P (nxn, positive semidefinite), A (pxn) with m number of equality constraints, and G (mxn) with m number of inequality constraints
## example, adapted from PIQP documentation library(piqp) library(Matrix) P <- Matrix(c(6., 0., 0., 4.), 2, 2, sparse = TRUE) c <- c(-1., -4.) A <- Matrix(c(1., -2.), 1, 2, sparse = TRUE) b <- c(1.) G <- Matrix(c(1., 2., -1., 0.), 2, 2, sparse = TRUE) h <- c(0.2, -1.) x_lb <- c(-1., -Inf) x_ub <- c(1., Inf) settings <- list(verbose = TRUE) # Solve with PIQP res <- solve_piqp(P, c, A, b, G, h, x_lb, x_ub, settings) res$x
Schwan, R., Jiang, Y., Kuhn, D., Jones, C.N. (2023). ``PIQP: A Proximal Interior-Point Quadratic Programming Solver.'' doi:10.48550/arXiv.2304.00290
piqp()
, piqp_settings()
and the underlying PIQP documentation: https://predict-epfl.github.io/piqp/