conversion function

Conversion between Representations of Responses or States

Conversion between Representations of Responses or States

Converts between binary matrix and pattern representations of response patterns or knowledge states.

as.pattern(R, freq = FALSE, useNames = FALSE, as.set = FALSE, sep = "", emptyset = "{}", as.letters = NULL) as.binmat(N.R, uniq = TRUE, col.names = NULL, as.logical = FALSE) is.subset(R)

Arguments

  • R: an indicator matrix of response patterns or knowledge states.

  • N.R: either a (named) vector of absolute frequencies of response patterns; or a character vector of response patterns or knowledge states; or a set of sets representing the knowledge structure.

  • freq: logical, should the frequencies of response patterns be reported?

  • uniq: logical, if TRUE, only the unique response patterns are returned.

  • useNames: logical, return response patterns as combinations of item names.

  • as.set: logical, return response patterns as set of sets.

  • sep: character to separate the item names.

  • emptyset: string representing the empty set if useNames

    is TRUE.

  • as.letters: deprecated, use useNames instead.

  • col.names: column names for the state or response matrix.

  • as.logical: logical, return logical matrix of states.

Returns

as.pattern returns a vector of integers named by the response patterns if freq is TRUE, else a character vector. If as.set is TRUE, the return value is of class set.

as.binmat returns an indicator matrix. If as.logical is TRUE, it returns a logical matrix.

is.subset returns a logical incidence matrix of the subset relation among states.

See Also

blim, set in package sets.

Examples

data(DoignonFalmagne7) K <- DoignonFalmagne7$K as.pattern(K, freq = TRUE) as.pattern(K) as.pattern(K, useNames = TRUE) as.pattern(K, as.set = TRUE) N.R <- DoignonFalmagne7$N.R dim(as.binmat(N.R)) dim(as.binmat(N.R, uniq = FALSE)) ## Knowledge structure as binary matrix as.binmat(c("000", "100", "101", "111")) as.binmat(set(set(), set("a"), set("a", "c"), set("a", "b", "c"))) as.binmat(c("000", "100", "101", "111"), as.logical = TRUE) ## Subset relation incidence matrix is.subset(K) ## Plotting the knowledge structure if(requireNamespace("relations") && requireNamespace("Rgraphviz")) { rownames(K) <- as.pattern(K, useNames = TRUE) plot(relations::as.relation(is.subset(K)), main = "") }