pht function

Hausman--Taylor Estimator for Panel Data

Hausman--Taylor Estimator for Panel Data

The Hausman--Taylor estimator is an instrumental variable estimator without external instruments (function deprecated).

pht( formula, data, subset, na.action, model = c("ht", "am", "bms"), index = NULL, ... ) ## S3 method for class 'pht' summary(object, ...) ## S3 method for class 'summary.pht' print( x, digits = max(3, getOption("digits") - 2), width = getOption("width"), subset = NULL, ... )

Arguments

  • formula: a symbolic description for the model to be estimated,

  • data: a data.frame,

  • subset: see lm() for "plm", a character or numeric vector indicating a subset of the table of coefficient to be printed for "print.summary.plm",

  • na.action: see lm(),

  • model: one of "ht" for Hausman--Taylor, "am"

    for Amemiya--MaCurdy and "bms" for Breusch--Mizon--Schmidt,

  • index: the indexes,

  • ...: further arguments.

  • object, x: an object of class "plm",

  • digits: digits,

  • width: the maximum length of the lines in the print output,

Returns

An object of class c("pht", "plm", "panelmodel").

A "pht" object contains the same elements as plm

object, with a further argument called varlist which describes the typology of the variables. It has summary and print.summary methods.

Details

pht estimates panels models using the Hausman--Taylor estimator, Amemiya--MaCurdy estimator, or Breusch--Mizon--Schmidt estimator, depending on the argument model. The model is specified as a two--part formula, the second part containing the exogenous variables.

Note

The function pht is deprecated. Please use function plm

to estimate Taylor--Hausman models like this with a three-part formula as shown in the example:

plm(<formula>, random.method = "ht", model = "random", inst.method ="baltagi"). The Amemiya--MaCurdy estimator and the Breusch--Mizon--Schmidt estimator is computed likewise with plm.

Examples

## replicates Baltagi (2005, 2013), table 7.4; Baltagi (2021), table 7.5 ## preferred way with plm() data("Wages", package = "plm") ht <- plm(lwage ~ wks + south + smsa + married + exp + I(exp ^ 2) + bluecol + ind + union + sex + black + ed | bluecol + south + smsa + ind + sex + black | wks + married + union + exp + I(exp ^ 2), data = Wages, index = 595, random.method = "ht", model = "random", inst.method = "baltagi") summary(ht) am <- plm(lwage ~ wks + south + smsa + married + exp + I(exp ^ 2) + bluecol + ind + union + sex + black + ed | bluecol + south + smsa + ind + sex + black | wks + married + union + exp + I(exp ^ 2), data = Wages, index = 595, random.method = "ht", model = "random", inst.method = "am") summary(am) ## deprecated way with pht() for HT #ht <- pht(lwage ~ wks + south + smsa + married + exp + I(exp^2) + # bluecol + ind + union + sex + black + ed | # sex + black + bluecol + south + smsa + ind, # data = Wages, model = "ht", index = 595) #summary(ht) # deprecated way with pht() for AM #am <- pht(lwage ~ wks + south + smsa + married + exp + I(exp^2) + # bluecol + ind + union + sex + black + ed | # sex + black + bluecol + south + smsa + ind, # data = Wages, model = "am", index = 595) #summary(am)

References

\insertCite AMEM:MACU:86plm

\insertCite BALT:13plm

\insertCite BREU:MIZO:SCHM:89plm

\insertCite HAUS:TAYL:81plm

Author(s)

Yves Croissant