plspm0.6.0 package

Partial Least Squares Path Modeling (PLS-PM)

alpha

Cronbach's alpha

check_args

Check arguments for plspm and plspm.fit

check_blocks

Check well defined blocks

check_boot

Check bootstrap options

check_data

Check Data

check_maxiter

Check maximum number of iterations

check_model

Check congruence between inner and outer models

check_modes

Check modes

check_path

Check path matrix

check_plscomp

Check vector of PLS components (for non-metric plspm)

check_scaling

Check types of measurement scales and metric

check_scheme

Check scheme

check_specs

Check specifications of PLS-PM algorithm

check_tol

Check tolerance threshold

dummy.G

Dummy by Giorgio

get_alpha

Calculate Cronbach's alpha

get_ave

Calculate AVE (Average Variance Extracted)

get_boot_stats

Get data frame with bootstrap statistics

get_boots

Performs bootstrap validation in plspm

get_data_scaled

Scaling data outside plspm

get_dummies

Dummy matrices for categorical manifest variables

get_dummy

Non-Metric Dummy

get_effects

Path coefficient effects for plspm

get_generals

Get general parameters

get_gof

Goodness-of-fit for plspm

get_GQI

Group Quality Index

get_inner_summary

Inner summary assessment

get_locals_test

Local groups comparison test

get_manifests

Building data matrix with manifest variables

get_metric

Type of metric based on scaling measurement

get_nom_scale

Non-Metric Nominal Scale

get_num_scale

Non-Metric Numerical Scale

get_numerics

Transform factors in MV into numeric

get_ord_scale

Non-Metric Ordinal Scale

get_path_scheme

Calculate inner weighting path scheme

get_paths

Calculate path coefficients for plspm

get_PLSR_NA

Internal PLS regression with missing values

get_PLSR

Internal PLS regression (full data)

get_plsr1

PLS regression for plspm

get_PLoubleQ.Rd

get_PLSRdoubleQ

get_rank

Rank of a non-metric variable

get_rho

Calculate Dillon-Goldstein's rho

get_scores

Calculate Latent Variable Scores

get_treated_data

Apply corresponding treatment to MV

get_unidim

Unidimensionality of reflective blocks

get_weights_nonmetric

Outer Weights Non-Metric Data

get_weights

Outer Weights

innerplot

Plot inner model

is_missing

Presence of missing values

it.reb

Iterative steps of Response-Based Unit Segmentation (REBUS)

local.models

PLS-PM for global and local models

normalize

Normalize a vector

outerplot

Plot outer model

plot.plspm

Plots for PLS Path Models

plspm-package

plspm: Partial Least Squares Path Modeling (PLS-PM)

plspm.fit

Basic results for Partial Least Squares Path Modeling

plspm.groups

Two Groups Comparison in PLS-PM

plspm

PLS-PM: Partial Least Squares Path Modeling

quantiplot

Quantification Plot

rebus.pls

Response Based Unit Segmentation (REBUS)

rebus.test

Permutation Test for REBUS Multi-Group Comparison

res.clus

Clustering on communality and structural residuals

rescale

Rescale Latent Variable Scores

rho

Dillon-Goldstein's rho

test_dataset

Test Data Set Availibility

test_factors

Test presence of factors

test_manifest_scaling

Test scaling of selected manifest variables

test_null_weights

Test outer weights convergence within specified maxiter

unidim

Unidimensionality of blocks

Partial Least Squares Path Modeling (PLS-PM), Tenenhaus, Esposito Vinzi, Chatelin, Lauro (2005) <doi:10.1016/j.csda.2004.03.005>, analysis for both metric and non-metric data, as well as REBUS analysis, Esposito Vinzi, Trinchera, Squillacciotti, and Tenenhaus (2008) <doi:10.1002/asmb.728>.

  • Maintainer: Frederic Bertrand
  • License: GPL-3
  • Last published: 2025-09-26