Distribution Plot
Plots probability density function given the parameters. May be useful when investigating parameter choice for prior distributions.
DistributionPlotBinomial(size = 200, prob = 0.5, xlab = "Number of Successes", ylab = "Probability Mass", signif.digits = 3, main = paste("Binomial Distribution: n =", size, "p =", signif(prob, digits = signif.digits))) DistributionPlotGamma(shape = 1, rate = 1, length = 100, xlab = "x", ylab = "Density", main = bquote(paste("Gamma Distribution: ", alpha, "=", .(signif(shape, digits = signif.digits)), ",", beta, "=", .(signif(rate, digits = signif.digits)))), signif.digits = 3) DistributionPlotNorm(mean = 0, sd = 1, length = 100, xlab = "x", ylab = "Density", main = bquote(paste("Normal Distribution: ", mu, "=", .(signif(mean, digits = signif.digits)), ",", sigma, "=", .(signif(sd, digits = signif.digits)))), signif.digits = 3)
size
: number of trials (Binomial)prob
: probability of success (Binomial)shape
: shape parameter. Must be strictly positive. (Gamma)rate
: an alternative way to specify the scale (Gamma)mean
: mean (Normal)sd
: standard deviation (Normal)xlab
: x-axis labelylab
: y-axis labelsignif.digits
: number of significant digits for default main
titlemain
: title for plotlength
: Number of points to use for obtaining a smooth curveBased on functions in package Rcmdr
None.
Peter Baker p.baker1@uq.edu.au
Rcmdr
Binomial
Normal
GammaDist
## Binomial distribution DistributionPlotBinomial() DistributionPlotBinomial(size=20, prob=0.2) ## Gamma distribution DistributionPlotGamma() ## Normal distribution DistributionPlotNorm()
Useful links