diagnosticsJagsMix function

MCMC diagnostics for polyploid segregation ratio mixture models

MCMC diagnostics for polyploid segregation ratio mixture models

Produce and/or plot various diagnostic measures from coda

package for Bayesian mixture models for assessing marker dosage in autopolyploids

diagnosticsJagsMix(mcmc.mixture, diagnostics = TRUE, plots = FALSE, index = -c( grep("T\\[",varnames(mcmc.mixture$mcmc.list)), grep("b\\[",varnames(mcmc.mixture$mcmc.list)) ), trace.plots = FALSE, auto.corrs = FALSE, density.plots = FALSE, xy.plots = FALSE, hpd.intervals = FALSE, hdp.prob = 0.95, return.results = FALSE)

Arguments

  • mcmc.mixture: Object of class segratioMCMC or runJagsWrapper after JAGS run produced by coda
  • diagnostics: if TRUE then print several coda dignostic tests
  • plots: if TRUE then produce several coda dignostic plots
  • index: index of parameters for disgnostic tests/plots (Default: mixture model (and random effects) parameters)
  • trace.plots: if TRUE plot mcmc traces (default: FALSE)
  • auto.corrs: if TRUE produce autocorrelations of mcmc's (default: FALSE)
  • density.plots: if TRUE plot parameter densities (default: FALSE)
  • xy.plots: if TRUE plot traces using 'lattice' (default: FALSE)
  • hpd.intervals: if TRUE print and return highest posterior density intervals for parameters specified by index
  • hdp.prob: probability for hpd.intervals
  • return.results: if TRUE return results as list

Returns

If return.results is TRUE then a list is returned with components depending on various settings of arguments

Author(s)

Peter Baker p.baker1@uq.edu.au

See Also

mcmc autocorr.diag

raftery.diag geweke.diag

gelman.diag trellisplots

Examples

## simulate small autooctaploid data set a1 <- sim.autoMarkers(8,c(0.7,0.2,0.1),n.markers=100,n.individuals=50) ##print(a1) sr <- segregationRatios(a1$markers) x <- setModel(3,8) ## Not run: ## fit simple model in one hit x.run <- runSegratioMM(sr, x, burn.in=200, sample=500) print(x.run) diagnosticsJagsMix(x.run) diagnosticsJagsMix(x.run, plot=TRUE) ## End(Not run)