cond_logLik function

Conditional log likelihood

Conditional log likelihood

The estimated conditional log likelihood from a fitted model. methods

## S4 method for signature 'kalmand_pomp' cond_logLik(object, ..., format = c("numeric", "data.frame")) ## S4 method for signature 'pfilterd_pomp' cond_logLik(object, ..., format = c("numeric", "data.frame")) ## S4 method for signature 'wpfilterd_pomp' cond_logLik(object, ..., format = c("numeric", "data.frame")) ## S4 method for signature 'bsmcd_pomp' cond_logLik(object, ..., format = c("numeric", "data.frame")) ## S4 method for signature 'pfilterList' cond_logLik(object, ..., format = c("numeric", "data.frame"))

Arguments

  • object: result of a filtering computation
  • ...: ignored
  • format: format of the returned object

Returns

The numerical value of the conditional log likelihood. Note that some methods compute not the log likelihood itself but instead a related quantity. To keep the code simple, the cond_logLik function is nevertheless used to extract this quantity.

When object is of class bsmcd_pomp

(i.e., the result of a bsmc2 computation), cond_logLik returns the conditional log evidence

(see bsmc2).

Details

The conditional likelihood is defined to be the value of the density of

Y(tk)Y(t1),,Y(tk1)YkY1,,Y(k1) Y(t_k) | Y(t_1),\dots,Y(t_{k-1})Yk | Y1,\dots,Y(k-1)

evaluated at Yk=ykYk = yk*. Here, YkYk is the observable process, and ykyk* the data, at time tkt_k.

Thus the conditional log likelihood at time tkt_k is

k(θ)=logf[Y(tk)=ykY(t1)=y1,,Y(tk1)=yk1],ellk(theta)=logf[Yk=ykY1=y1,,Y(k1)=y(k1)], \ell_k(\theta) = \log f[Y(t_k)=y^*_k \vert Y(t_1)=y^*_1, \dots, Y(t_{k-1})=y^*_{k-1}],ell_k(theta)=log f[Yk = yk* | Y1=y1*, \dots, Y(k-1)=y(k-1)*],

where ff is the probability density above.

See Also

More on sequential Monte Carlo methods: bsmc2(), eff_sample_size(), filter_mean(), filter_traj(), kalman, mif2(), pfilter(), pmcmc(), pred_mean(), pred_var(), saved_states(), wpfilter()

Other extraction methods: coef(), covmat(), eff_sample_size(), filter_mean(), filter_traj(), forecast(), logLik, obs(), pred_mean(), pred_var(), saved_states(), spy(), states(), summary(), time(), timezero(), traces()

  • Maintainer: Aaron A. King
  • License: GPL-3
  • Last published: 2025-04-16