filter_mean function

Filtering mean

Filtering mean

The mean of the filtering distribution methods

## S4 method for signature 'kalmand_pomp' filter_mean(object, vars, ..., format = c("array", "data.frame")) ## S4 method for signature 'pfilterd_pomp' filter_mean(object, vars, ..., format = c("array", "data.frame"))

Arguments

  • object: result of a filtering computation
  • vars: optional character; names of variables
  • ...: ignored
  • format: format of the returned object

Details

The filtering distribution is that of

X(tk)Y(t1)=y1,,Y(tk)=yk,XkY1=y1,,Yk=yk, X(t_k) \vert Y(t_1)=y^*_1,\dots,Y(t_k)=y^*_k,Xk | Y1=y1*,\dots,Yk=yk*,

where XkXk, YkYk are the latent state and observable processes, respectively, and ytyt* is the data, at time tktk.

The filtering mean is therefore the expectation of this distribution

E[X(tk)Y(t1)=y1,,Y(tk)=yk].E[XkY1=y1,,Yk=yk]. E[X(t_k) \vert Y(t_1)=y^*_1,\dots,Y(t_k)=y^*_k].E[Xk | Y1=y1*,\dots,Yk=yk*].

See Also

More on sequential Monte Carlo methods: bsmc2(), cond_logLik(), eff_sample_size(), filter_traj(), kalman, mif2(), pfilter(), pmcmc(), pred_mean(), pred_var(), saved_states(), wpfilter()

Other extraction methods: coef(), cond_logLik(), covmat(), eff_sample_size(), filter_traj(), forecast(), logLik, obs(), pred_mean(), pred_var(), saved_states(), spy(), states(), summary(), time(), timezero(), traces()

  • Maintainer: Aaron A. King
  • License: GPL-3
  • Last published: 2025-04-16