gompertz function

Gompertz model with log-normal observations.

Gompertz model with log-normal observations.

gompertz() constructs a pomp object encoding a stochastic Gompertz population model with log-normal measurement error. data

gompertz( K = 1, r = 0.1, sigma = 0.1, tau = 0.1, X_0 = 1, times = 1:100, t0 = 0 )

Arguments

  • K: carrying capacity
  • r: growth rate
  • sigma: process noise intensity
  • tau: measurement error s.d.
  • X_0: value of the latent state variable X at the zero time
  • times: observation times
  • t0: zero time

Returns

A pomp object with simulated data.

Details

The state process is

Xt+1=K1SXtSϵt,X[t+1]=K(1S)X[t]Seps[t], X_{t+1} = K^{1-S} X_{t}^S \epsilon_{t},X[t+1]=K^(1-S) X[t]^S eps[t],

where S=erS=e^{-r}

and the eps[t]eps[t] are i.i.d. lognormal random deviates with variance sigma2sigma^2. The observed variables YtY_t are distributed as

YtLognormal(logXt,τ).Y[t] Lognormal(log(X[t]),tau). Y_t\sim\mathrm{Lognormal}(\log{X_t},\tau).Y[t]~Lognormal(log(X[t]),tau).

Parameters include the per-capita growth rate rr, the carrying capacity KK, the process noise s.d. sigmasigma, the measurement error s.d. tautau, and the initial condition X[0]X[0]. The pomp object includes parameter transformations that log-transform the parameters for estimation purposes.

Examples

plot(gompertz()) plot(gompertz(K=2,r=0.01))

See Also

More examples provided with pomp: blowflies, childhood_disease_data, compartmental_models, dacca(), ebola, ou2(), pomp_examples, ricker(), rw2(), verhulst()

  • Maintainer: Aaron A. King
  • License: GPL-3
  • Last published: 2025-01-08