alpha_1, alpha_2, alpha_3, alpha_4: entries of the α matrix, in column-major order. That is, alpha_2 is in the lower-left position.
sigma_1, sigma_2, sigma_3: entries of the lower-triangular σ matrix. sigma_2 is the entry in the lower-left position.
tau: measurement error s.d.
x1_0, x2_0: latent variable values at time t0
times: vector of observation times
t0: the zero time
Returns
A pomp object with simulated data.
Details
If the state process is X(t)=(X1(t),X2(t)), then
X(t+1)=αX(t)+σϵ(t),
where α and σ are 2x2 matrices, σ is lower-triangular, and ϵ(t) is standard bivariate normal. The observation process is Y(t)=(Y1(t),Y2(t)), where Yi(t)∼normal(Xi(t),τ).
Examples
po <- ou2()plot(po)coef(po)x <- simulate(po)plot(x)pf <- pfilter(po,Np=1000)logLik(pf)
See Also
More examples provided with pomp: blowflies, childhood_disease_data, compartmental_models, dacca(), ebola, gompertz(), pomp_examples, ricker(), rw2(), verhulst()