pred_var function

Prediction variance

Prediction variance

The variance of the prediction distribution

## S4 method for signature 'pfilterd_pomp' pred_var(object, vars, ..., format = c("array", "data.frame"))

Arguments

  • object: result of a filtering computation
  • vars: optional character; names of variables
  • ...: ignored
  • format: format of the returned object

Details

The prediction distribution is that of

X(tk)Y(t1)=y1,,Y(tk1)=yk1,XkY1=y1,,Y(k1)=y(k1), X(t_k) \vert Y(t_1)=y^*_1,\dots,Y(t_{k-1})=y^*_{k-1},Xk | Y1=y1*,\dots,Y(k-1)=y(k-1)*,

where XkXk, YkYk are the latent state and observable processes, respectively, and ykyk* is the data, at time tktk.

The prediction variance is therefore the variance of this distribution

Var[X(tk)Y(t1)=y1,,Y(tk1)=yk1].Var[XkY1=y1,,Y(k1)=y(k1)]. \mathrm{Var}[X(t_k) \vert Y(t_1)=y^*_1,\dots,Y(t_{k-1})=y^*_{k-1}].Var[Xk | Y1=y1*,\dots,Y(k-1)=y(k-1)*].

See Also

More on sequential Monte Carlo methods: bsmc2(), cond_logLik(), eff_sample_size(), filter_mean(), filter_traj(), kalman, mif2(), pfilter(), pmcmc(), pred_mean(), saved_states(), wpfilter()

Other extraction methods: coef(), cond_logLik(), covmat(), eff_sample_size(), filter_mean(), filter_traj(), forecast(), logLik, obs(), pred_mean(), saved_states(), spy(), states(), summary(), time(), timezero(), traces()

  • Maintainer: Aaron A. King
  • License: GPL-3
  • Last published: 2025-04-16