ricker function

Ricker model with Poisson observations.

Ricker model with Poisson observations.

ricker is a pomp object encoding a stochastic Ricker model with Poisson measurement error. data

ricker(r = exp(3.8), sigma = 0.3, phi = 10, c = 1, N_0 = 7)

Arguments

  • r: intrinsic growth rate
  • sigma: environmental process noise s.d.
  • phi: sampling rate
  • c: density dependence parameter
  • N_0: initial condition

Returns

A pomp object containing the Ricker model and simulated data.

Details

The state process is c("N[t+1]=\nN[t+1] =\n", "rN[t]exp(cN[t]+e[t])r N[t] exp(-c N[t]+e[t])"), where the e[t]e[t] are i.i.d. normal random deviates with zero mean and variance sigma2sigma^2. The observed variables y[t]y[t] are distributed as Poisson(phiN[t])Poisson(phi N[t]).

Examples

po <- ricker() plot(po) coef(po) simulate(po) |> plot() # takes too long for R CMD check ## generate a bifurcation diagram for the Ricker map p <- parmat(coef(ricker()),nrep=500) p["r",] <- exp(seq(from=1.5,to=4,length=500)) trajectory( ricker(), times=seq(from=1000,to=2000,by=1), params=p, format="array" ) -> x matplot(p["r",],x["N",,],pch='.',col='black', xlab=expression(log(r)),ylab="N",log='x')

See Also

More examples provided with pomp: blowflies, childhood_disease_data, compartmental_models, dacca(), ebola, gompertz(), ou2(), pomp_examples, rw2(), verhulst()

  • Maintainer: Aaron A. King
  • License: GPL-3
  • Last published: 2025-04-16