verhulst function

Verhulst-Pearl model

Verhulst-Pearl model

The Verhulst-Pearl (logistic) model of population growth. data

verhulst(n_0 = 10000, K = 10000, r = 0.9, sigma = 0.4, tau = 0.1, dt = 0.01)

Arguments

  • n_0: initial condition
  • K: carrying capacity
  • r: intrinsic growth rate
  • sigma: environmental process noise s.d.
  • tau: measurement error s.d.
  • dt: Euler timestep

Returns

A pomp object containing the model and simulated data. The following basic components are included in the pomp object: rinit , rprocess , rmeasure , dmeasure , and skeleton .

Details

A stochastic version of the Verhulst-Pearl logistic model. This evolves in continuous time, according to the stochastic differential equation

dnt=rnt(1ntK)dt+σntdWt.dn[t]=rn[t](1n[t]/K)dt+sigman[t]dW[t]. dn_t = r\,n_t\,\left(1-\frac{n_t}{K}\right)\,dt+\sigma\,n_t\,dW_t.dn[t] = r n[t] (1-n[t]/K) dt + sigma n[t] dW[t].

Numerically, we simulate the stochastic dynamics using an Euler approximation.

The measurements are assumed to be log-normally distributed:

NtLognormal(lognt,τ).N[t] Lognormal(log(n[t]),tau). N_t \sim \mathrm{Lognormal}\left(\log{n_t},\tau\right).N[t] ~ Lognormal(log(n[t]),tau).

Examples

# takes too long for R CMD check verhulst() -> po plot(po) plot(simulate(po)) pfilter(po,Np=1000) -> pf logLik(pf) spy(po)

See Also

More examples provided with pomp: blowflies, childhood_disease_data, compartmental_models, dacca(), ebola, gompertz(), ou2(), pomp_examples, ricker(), rw2()

  • Maintainer: Aaron A. King
  • License: GPL-3
  • Last published: 2025-04-16