plot_dfa2 function

Plot Log-OR vs. X for Gamma Discriminant Function Approach

Plot Log-OR vs. X for Gamma Discriminant Function Approach

Archived on 7/23/2018. Please use plot_gdfa instead.

plot_dfa2(estimates, varcov = NULL, xrange, xname = "X", cvals = NULL, set_labels = NULL, set_panels = TRUE)

Arguments

  • estimates: Numeric vector of point estimates for (gamma_0, gamma_y, gamma_c^T, b1, b0).
  • varcov: Numeric matrix with variance-covariance matrix for estimates. If NULL, 95% confidence bands are omitted.
  • xrange: Numeric vector specifying range of X values to plot.
  • xname: Character vector specifying name of X variable, for plot title and x-axis label.
  • cvals: Numeric vector or list of numeric vectors specifying covariate values to use in log-odds ratio calculations.
  • set_labels: Character vector of labels for the sets of covariate values. Only used if cvals is a list.
  • set_panels: Logical value for whether to use separate panels for each set of covariate values, as opposed to using different colors on a single plot.

Returns

Plot of log-OR vs. X generated by ggplot.

Examples

# Fit Gamma discriminant function model for poolwise Xtilde vs. (Y, C), # without assuming a constant log-OR. Ignoring processing errors for simplicity. data(pdat2) dat <- pdat2$dat c.list <- pdat2$c.list fit <- p_dfa_xerrors2( g = dat$g, y = dat$y, xtilde = dat$xtilde, c = c.list, errors = "neither", constant_or = FALSE ) # Plot estimated log-OR vs. X at mean value for C p <- plot_dfa2( estimates = fit$estimates, varcov = fit$theta.var, xrange = range(dat$xtilde / dat$g), cvals = mean(unlist(c.list)) ) p
  • Maintainer: Dane R. Van Domelen
  • License: GPL-3
  • Last published: 2020-02-13

Useful links