d: Numeric value specifying true difference in group means.
mu1, mu2: Numeric value specifying group means. Required if multiplicative = TRUE.
sigsq: Numeric value specifying the variance of observations.
sigsq1, sigsq2: Numeric value specifying the variance of observations for each group.
sigsq_p: Numeric value specifying the variance of processing errors.
sigsq_m: Numeric value specifying the variance of measurement errors.
multiplicative: Logical value for whether to assume multiplicative rather than additive errors.
alpha: Numeric value specifying type-1 error rate.
beta: Numeric value specifying type-2 error rate.
assay_cost: Numeric value specifying cost of each assay.
other_costs: Numeric value specifying other per-subject costs.
labels: Logical value.
ylim: Numeric vector.
Returns
Plot of total costs vs. pool size generated by ggplot.
Examples
# Plot total study costs vs. pool size for d = 0.25, sigsq = 1, and costs of# $100 per assay and $0 in other per-subject costs.poolcost_t(d =0.25, sigsq =1)# Repeat but with additive processing error and $10 in per-subject costs.poolcost_t(d =0.25, sigsq =1, sigsq_p =0.5, other_costs =10)