poolcushion_t function

Visualize T-test Power for Pooling Design as Function of Processing Error Variance

Visualize T-test Power for Pooling Design as Function of Processing Error Variance

Useful for choosing a sample size such that power will be adequate even if the processing errors are larger than anticipated.

poolcushion_t(g = NULL, n = NULL, d = NULL, mu1 = NULL, mu2 = NULL, sigsq = NULL, sigsq1 = sigsq, sigsq2 = sigsq, sigsq_p_predicted = 0, sigsq_p_range = NULL, sigsq_m = 0, multiplicative = FALSE, alpha = 0.05, beta = 0.2, labels = TRUE)

Arguments

  • g: Numeric value specifying the pool size.
  • n: Numeric value specifying the number of assays per group. If unspecified, function figures out n required for 100 (1 - beta)% power when sigsq_p = 0.
  • d: Numeric value specifying true difference in group means.
  • mu1, mu2: Numeric value specifying group means. Required if multiplicative = TRUE.
  • sigsq: Numeric value specifying the variance of observations.
  • sigsq1, sigsq2: Numeric value specifying the variance of observations for each group.
  • sigsq_p_predicted: Numeric value specifying predicted processing error variance. Used to calculate n if n is unspecified.
  • sigsq_p_range: Numeric vector specifying range of processing error variances to consider.
  • sigsq_m: Numeric value specifying the variance of measurement errors.
  • multiplicative: Logical value for whether to assume multiplicative rather than additive errors.
  • alpha: Numeric value specifying type-1 error rate.
  • beta: Numeric value specifying type-2 error rate. Only used if n = NULL.
  • labels: Logical value.

Returns

Plot generated by ggplot.

Examples

# Determine optimal pool size and number of assays to detect a difference in # group means of 0.5, with a common variance of 1, processing errors with # variance of 0.1, and measurement errors with variance of 0.2. Assume costs # of $100 per assay and $10 per subject. poolcost_t( g = 1: 10, d = 0.5, sigsq = 1, sigsq_p = 0.1, sigsq_m = 0.2, assay_cost = 100, other_costs = 10 ) # Visualize how power of the study will be affected if the true processing # error variance is not exactly 0.1. poolcushion_t( g = 7, n = 29, d = 0.5, sigsq = 1, sigsq_p_predicted = 0.1, sigsq_m = 0.2 )
  • Maintainer: Dane R. Van Domelen
  • License: GPL-3
  • Last published: 2020-02-13

Useful links