n: Numeric value specifying the number of assays per group. If unspecified, function figures out n required for 100 (1 - beta)% power when sigsq_p = 0.
d: Numeric value specifying true difference in group means.
mu1, mu2: Numeric value specifying group means. Required if multiplicative = TRUE.
sigsq: Numeric value specifying the variance of observations.
sigsq1, sigsq2: Numeric value specifying the variance of observations for each group.
sigsq_p_predicted: Numeric value specifying predicted processing error variance. Used to calculate n if n is unspecified.
sigsq_p_range: Numeric vector specifying range of processing error variances to consider.
sigsq_m: Numeric value specifying the variance of measurement errors.
multiplicative: Logical value for whether to assume multiplicative rather than additive errors.
alpha: Numeric value specifying type-1 error rate.
beta: Numeric value specifying type-2 error rate. Only used if n = NULL.
labels: Logical value.
Returns
Plot generated by ggplot.
Examples
# Determine optimal pool size and number of assays to detect a difference in# group means of 0.5, with a common variance of 1, processing errors with# variance of 0.1, and measurement errors with variance of 0.2. Assume costs# of $100 per assay and $10 per subject.poolcost_t( g =1:10, d =0.5, sigsq =1, sigsq_p =0.1, sigsq_m =0.2, assay_cost =100, other_costs =10)# Visualize how power of the study will be affected if the true processing# error variance is not exactly 0.1.poolcushion_t( g =7, n =29, d =0.5, sigsq =1, sigsq_p_predicted =0.1, sigsq_m =0.2)