poolpower_t function

Visualize T-test Power for Pooling Design

Visualize T-test Power for Pooling Design

Useful for assessing efficiency gains that might be achieved with a pooling design.

poolpower_t(g = c(1, 3, 10), d = NULL, mu1 = NULL, mu2 = NULL, sigsq = NULL, sigsq1 = sigsq, sigsq2 = sigsq, sigsq_p = 0, sigsq_m = 0, multiplicative = FALSE, alpha = 0.05, beta = 0.2, assay_cost = 100, other_costs = 0, labels = TRUE)

Arguments

  • g: Numeric vector of pool sizes to include.
  • d: Numeric value specifying true difference in group means.
  • mu1, mu2: Numeric value specifying group means. Required if multiplicative = TRUE.
  • sigsq: Numeric value specifying the variance of observations.
  • sigsq1, sigsq2: Numeric value specifying the variance of observations for each group.
  • sigsq_p: Numeric value specifying the variance of processing errors.
  • sigsq_m: Numeric value specifying the variance of measurement errors.
  • multiplicative: Logical value for whether to assume multiplicative rather than additive errors.
  • alpha: Numeric value specifying type-1 error rate.
  • beta: Numeric value specifying type-2 error rate.
  • assay_cost: Numeric value specifying cost of each assay.
  • other_costs: Numeric value specifying other per-subject costs.
  • labels: Logical value.

Returns

Plot of power vs. total costs generated by ggplot.

Examples

# Plot power vs. total study costs for d = 0.25, sigsq = 1, and costs of $100 # per assay and $0 in other per-subject costs. poolpower_t(d = 0.5, sigsq = 1, assay_cost = 100, other_costs = 0) # Repeat but with $10 in per-subject costs. poolpower_t(d = 0.5, sigsq = 1, assay_cost = 100, other_costs = 10) # Back to no per-subject costs, but with processing and measurement error poolpower_t(d = 0.5, sigsq = 1, sigsq_p = 0.2, sigsq_m = 0.1, assay_cost = 100, other_costs = 0)
  • Maintainer: Dane R. Van Domelen
  • License: GPL-3
  • Last published: 2020-02-13

Useful links