d: Numeric value specifying true difference in group means.
mu1, mu2: Numeric value specifying group means. Required if multiplicative = TRUE.
sigsq: Numeric value specifying the variance of observations.
sigsq1, sigsq2: Numeric value specifying the variance of observations for each group.
sigsq_p: Numeric value specifying the variance of processing errors.
sigsq_m: Numeric value specifying the variance of measurement errors.
multiplicative: Logical value for whether to assume multiplicative rather than additive errors.
alpha: Numeric value specifying type-1 error rate.
beta: Numeric value specifying type-2 error rate.
assay_cost: Numeric value specifying cost of each assay.
other_costs: Numeric value specifying other per-subject costs.
labels: Logical value.
Returns
Plot of power vs. total costs generated by ggplot.
Examples
# Plot power vs. total study costs for d = 0.25, sigsq = 1, and costs of $100# per assay and $0 in other per-subject costs.poolpower_t(d =0.5, sigsq =1, assay_cost =100, other_costs =0)# Repeat but with $10 in per-subject costs.poolpower_t(d =0.5, sigsq =1, assay_cost =100, other_costs =10)# Back to no per-subject costs, but with processing and measurement errorpoolpower_t(d =0.5, sigsq =1, sigsq_p =0.2, sigsq_m =0.1, assay_cost =100, other_costs =0)