poso_dose_auc function

Estimate the dose needed to reach a target area under the concentration-time curve (AUC)

Estimate the dose needed to reach a target area under the concentration-time curve (AUC)

estimates the dose needed to reach a target area under the concentration-time curve (AUC) given a population pharmacokinetic model, a set of individual parameters, and a target AUC.

poso_dose_auc( dat = NULL, prior_model = NULL, tdm = FALSE, time_auc, time_dose = NULL, cmt_dose = 1, target_auc, estim_method = "map", nocb = FALSE, p = NULL, greater_than = TRUE, starting_time = 0, interdose_interval = NULL, add_dose = NULL, duration = 0, starting_dose = 100, indiv_param = NULL )

Arguments

  • dat: Dataframe. An individual subject dataset following the structure of NONMEM/rxode2 event records.

  • prior_model: A posologyr prior population pharmacokinetics model, a list of six objects.

  • tdm: A boolean. If TRUE: estimates the optimal dose for a selected target auc over a selected duration following the events from dat, and using Maximum A Posteriori estimation. Setting tdm to TRUE causes the following to occur:

    • the time_dose argument is required and is used as the starting point for the AUC calculation instead of starting_time;
    • the arguments estim_method, p, greater_than, interdose_interval, add_dose, indiv_param and starting_time are ignored.
  • time_auc: Numeric. A duration. The target AUC is computed from starting_time to starting_time + time_auc. When tdm is set to TRUE the target AUC is computed from time_dose to time_dose + time_auc instead.

  • time_dose: Numeric. Time when the dose is to be given. Only used and mandatory, when tdm is set to TRUE.

  • cmt_dose: Character or numeric. The compartment in which the dose is to be administered. Must match one of the compartments in the prior model. Defaults to 1.

  • target_auc: Numeric. The target AUC.

  • estim_method: A character string. An estimation method to be used for the individual parameters. The default method "map" is the Maximum A Posteriori estimation, the method "prior" simulates from the prior population model, and "sir" uses the Sequential Importance Resampling algorithm to estimate the a posteriori distribution of the individual parameters. This argument is ignored if indiv_param is provided, or if tdm is set to TRUE.

  • nocb: A boolean. for time-varying covariates: the next observation carried backward (nocb) interpolation style, similar to NONMEM. If FALSE, the last observation carried forward (locf) style will be used. Defaults to FALSE.

  • p: Numeric. The proportion of the distribution of AUC to consider for the optimization. Mandatory for estim_method=sir. This argument is ignored if tdm is set to TRUE.

  • greater_than: A boolean. If TRUE: targets a dose leading to a proportion p of the AUCs to be greater than target_auc. Respectively, lower if FALSE. This argument is ignored if tdm is set to TRUE.

  • starting_time: Numeric. First point in time of the AUC, for multiple dose regimen. The default is zero. This argument is ignored if tdm is set to TRUE, and time_dose is used as a starting point instead.

  • interdose_interval: Numeric. Time for the interdose interval for multiple dose regimen. Must be provided when add_dose is used. This argument is ignored if tdm is set to TRUE.

  • add_dose: Numeric. Additional doses administered at inter-dose interval after the first dose. Optional. This argument is ignored if tdm is set to TRUE.

  • duration: Numeric. Duration of infusion, for zero-order administrations.

  • starting_dose: Numeric. Starting dose for the optimization algorithm.

  • indiv_param: Optional. A set of individual parameters : THETA, estimates of ETA, and covariates. This argument is ignored if tdm is set to TRUE.

Returns

A list containing the following components:

  • dose: Numeric. An optimal dose for the selected target AUC.
  • type_of_estimate: Character string. The type of estimate of the individual parameters. Either a point estimate, or a distribution.
  • auc_estimate: A vector of numeric estimates of the AUC. Either a single value (for a point estimate of ETA), or a distribution.
  • indiv_param: A data.frame. The set of individual parameters used for the determination of the optimal dose : THETA, estimates of ETA, and covariates

Examples

rxode2::setRxThreads(2L) # limit the number of threads # model mod_run001 <- function() { ini({ THETA_Cl <- 4.0 THETA_Vc <- 70.0 THETA_Ka <- 1.0 ETA_Cl ~ 0.2 ETA_Vc ~ 0.2 ETA_Ka ~ 0.2 prop.sd <- sqrt(0.05) }) model({ TVCl <- THETA_Cl TVVc <- THETA_Vc TVKa <- THETA_Ka Cl <- TVCl*exp(ETA_Cl) Vc <- TVVc*exp(ETA_Vc) Ka <- TVKa*exp(ETA_Ka) K20 <- Cl/Vc Cc <- centr/Vc d/dt(depot) = -Ka*depot d/dt(centr) = Ka*depot - K20*centr Cc ~ prop(prop.sd) }) } # df_patient01: event table for Patient01, following a 30 minutes intravenous # infusion df_patient01 <- data.frame(ID=1, TIME=c(0.0,1.0,14.0), DV=c(NA,25.0,5.5), AMT=c(2000,0,0), EVID=c(1,0,0), DUR=c(0.5,NA,NA)) # estimate the optimal dose to reach an AUC(0-12h) of 45 h.mg/l poso_dose_auc(dat=df_patient01,prior_model=mod_run001, time_auc=12,target_auc=45)