poso_estim_map function

Estimate the Maximum A Posteriori individual parameters

Estimate the Maximum A Posteriori individual parameters

Estimates the Maximum A Posteriori (MAP) individual parameters, also known as Empirical Bayes Estimates (EBE).

poso_estim_map( dat = NULL, prior_model = NULL, return_model = TRUE, return_ofv = FALSE, nocb = FALSE )

Arguments

  • dat: Dataframe. An individual subject dataset following the structure of NONMEM/rxode2 event records.
  • prior_model: A posologyr prior population pharmacokinetics model, a list of six objects.
  • return_model: A boolean. Returns a rxode2 model using the estimated ETAs if set to TRUE.
  • return_ofv: A boolean. Returns a the Objective Function Value (OFV) if set to TRUE.
  • nocb: A boolean. for time-varying covariates: the next observation carried backward (nocb) interpolation style, similar to NONMEM. If FALSE, the last observation carried forward (locf) style will be used. Defaults to FALSE.

Returns

A named list consisting of one or more of the following elements depending on the input parameters of the function: $eta a named vector of the MAP estimates of the individual values of ETA, $model an rxode2 model using the estimated ETAs, $event the data.table used to solve the returned rxode2 model.

Examples

rxode2::setRxThreads(1) # limit the number of threads # model mod_run001 <- function() { ini({ THETA_Cl <- 4.0 THETA_Vc <- 70.0 THETA_Ka <- 1.0 ETA_Cl ~ 0.2 ETA_Vc ~ 0.2 ETA_Ka ~ 0.2 prop.sd <- sqrt(0.05) }) model({ TVCl <- THETA_Cl TVVc <- THETA_Vc TVKa <- THETA_Ka Cl <- TVCl*exp(ETA_Cl) Vc <- TVVc*exp(ETA_Vc) Ka <- TVKa*exp(ETA_Ka) K20 <- Cl/Vc Cc <- centr/Vc d/dt(depot) = -Ka*depot d/dt(centr) = Ka*depot - K20*centr Cc ~ prop(prop.sd) }) } # df_patient01: event table for Patient01, following a 30 minutes intravenous # infusion df_patient01 <- data.frame(ID=1, TIME=c(0.0,1.0,14.0), DV=c(NA,25.0,5.5), AMT=c(2000,0,0), EVID=c(1,0,0), DUR=c(0.5,NA,NA)) # estimate the Maximum A Posteriori individual parameters poso_estim_map(dat=df_patient01,prior_model=mod_run001)