dat: Dataframe. An individual subject dataset following the structure of NONMEM/rxode2 event records.
prior_model: A posologyr prior population pharmacokinetics model, a list of six objects.
return_model: A boolean. Returns a rxode2 model using the estimated ETAs if set to TRUE.
burn_in: Number of burn-in iterations for the Metropolis-Hastings algorithm.
n_iter: Total number of iterations (following the burn-in iterations) for each Markov chain of the Metropolis-Hastings algorithm.
n_chains: Number of Markov chains
nocb: A boolean. for time-varying covariates: the next observation carried backward (nocb) interpolation style, similar to NONMEM. If FALSE, the last observation carried forward (locf) style will be used. Defaults to FALSE.
control: A list of parameters controlling the Metropolis-Hastings algorithm.
Returns
If return_model is set to FALSE, a list of one element: a dataframe $eta of ETAs from the posterior distribution, estimated by Markov Chain Monte Carlo. If return_model is set to TRUE, a list of the dataframe of the posterior distribution of ETA, and a rxode2 model using the estimated distributions of ETAs.
Examples
# modelmod_run001 <-function(){ ini({ THETA_Cl <-4.0 THETA_Vc <-70.0 THETA_Ka <-1.0 ETA_Cl ~0.2 ETA_Vc ~0.2 ETA_Ka ~0.2 prop.sd <- sqrt(0.05)}) model({ TVCl <- THETA_Cl
TVVc <- THETA_Vc
TVKa <- THETA_Ka
Cl <- TVCl*exp(ETA_Cl) Vc <- TVVc*exp(ETA_Vc) Ka <- TVKa*exp(ETA_Ka) K20 <- Cl/Vc
Cc <- centr/Vc
d/dt(depot)=-Ka*depot
d/dt(centr)= Ka*depot - K20*centr
Cc ~ prop(prop.sd)})}# df_patient01: event table for Patient01, following a 30 minutes intravenous# infusiondf_patient01 <- data.frame(ID=1, TIME=c(0.0,1.0,14.0), DV=c(NA,25.0,5.5), AMT=c(2000,0,0), EVID=c(1,0,0), DUR=c(0.5,NA,NA))# estimate the posterior distribution of population parametersposo_estim_mcmc(dat=df_patient01,prior_model=mod_run001,n_iter=50,n_chains=2)
References
Comets E, Lavenu A, Lavielle M. Parameter estimation in nonlinear mixed effect models using saemix, an R implementation of the SAEM algorithm. Journal of Statistical Software 80, 3 (2017), 1-41.
Author(s)
Emmanuelle Comets, Audrey Lavenu, Marc Lavielle, Cyril Leven