poso_replace_et function

Update a model with events from a new rxode2 event table

Update a model with events from a new rxode2 event table

Update a model with events from a new rxode2 event table, while accounting for and interpolating any covariates or inter-occasion variability.

poso_replace_et( target_model = NULL, prior_model = NULL, event_table = NULL, interpolation = "locf" )

Arguments

  • target_model: Solved rxode2 object. A model generated by one of posologyr's estimation functions.
  • prior_model: A posologyr prior population model.
  • event_table: An rxode2 event table.
  • interpolation: Character string. Specifies the interpolation method to be used for covariates. Choices are "locf" for last observation carried forward, "nocb" for next observation carried backward, "midpoint", or "linear".

Returns

A solved rxode2 object, updated with the event table provided.

Examples

# model mod_run001 <- function() { ini({ THETA_Cl <- 4.0 THETA_Vc <- 70.0 THETA_Ka <- 1.0 ETA_Cl ~ 0.2 ETA_Vc ~ 0.2 ETA_Ka ~ 0.2 prop.sd <- sqrt(0.05) }) model({ TVCl <- THETA_Cl TVVc <- THETA_Vc TVKa <- THETA_Ka Cl <- TVCl*exp(ETA_Cl) Vc <- TVVc*exp(ETA_Vc) Ka <- TVKa*exp(ETA_Ka) K20 <- Cl/Vc Cc <- centr/Vc d/dt(depot) = -Ka*depot d/dt(centr) = Ka*depot - K20*centr Cc ~ prop(prop.sd) }) } # df_patient01: event table for Patient01, following a 30 minutes intravenous # infusion df_patient01 <- data.frame(ID=1, TIME=c(0.0,1.0,14.0), DV=c(NA,25.0,5.5), AMT=c(2000,0,0), EVID=c(1,0,0), DUR=c(0.5,NA,NA)) # estimate the prior distribution of population parameters pop_model <- poso_simu_pop(dat=df_patient01,prior_model=mod_run001,n_simul=100) # create a new rxode2 event table from the initial dataset new_et <- rxode2::as.et(df_patient01) new_et$add_sampling(seq(14,15,by=0.1)) # update the model with the new event table poso_replace_et(pop_model$model,mod_run001,event_table=new_et)