target_model: Solved rxode2 object. A model generated by one of posologyr's estimation functions.
prior_model: A posologyr prior population model.
event_table: An rxode2 event table.
interpolation: Character string. Specifies the interpolation method to be used for covariates. Choices are "locf" for last observation carried forward, "nocb" for next observation carried backward, "midpoint", or "linear".
Returns
A solved rxode2 object, updated with the event table provided.
Examples
# modelmod_run001 <-function(){ ini({ THETA_Cl <-4.0 THETA_Vc <-70.0 THETA_Ka <-1.0 ETA_Cl ~0.2 ETA_Vc ~0.2 ETA_Ka ~0.2 prop.sd <- sqrt(0.05)}) model({ TVCl <- THETA_Cl
TVVc <- THETA_Vc
TVKa <- THETA_Ka
Cl <- TVCl*exp(ETA_Cl) Vc <- TVVc*exp(ETA_Vc) Ka <- TVKa*exp(ETA_Ka) K20 <- Cl/Vc
Cc <- centr/Vc
d/dt(depot)=-Ka*depot
d/dt(centr)= Ka*depot - K20*centr
Cc ~ prop(prop.sd)})}# df_patient01: event table for Patient01, following a 30 minutes intravenous# infusiondf_patient01 <- data.frame(ID=1, TIME=c(0.0,1.0,14.0), DV=c(NA,25.0,5.5), AMT=c(2000,0,0), EVID=c(1,0,0), DUR=c(0.5,NA,NA))# estimate the prior distribution of population parameterspop_model <- poso_simu_pop(dat=df_patient01,prior_model=mod_run001,n_simul=100)# create a new rxode2 event table from the initial datasetnew_et <- rxode2::as.et(df_patient01)new_et$add_sampling(seq(14,15,by=0.1))# update the model with the new event tableposo_replace_et(pop_model$model,mod_run001,event_table=new_et)