M step for histograms
M step for histograms estimator
Mstep_hist(data, VE, directed, sparse)
data
: Data same of mainVEMVE
: Results of the previous VE for iterative computationdirected
: Boolean for directed (TRUE) or undirected (FALSE) casesparse
: Boolean for sparse (TRUE) or not sparse (FALSE) caseBARAUD, Y. & BIRGÉ, L. (2009). Estimating the intensity of a random measure by histogram type estimators. Probab. Theory Related Fields 143, 239–284.
MATIAS, C., REBAFKA, T. & VILLERS, F. (2018). A semiparametric extension of the stochastic block model for longitudinal networks. Biometrika.
REYNAUD -BOURET, P. (2006). Penalized projection estimators of the Aalen multiplicative intensity. Bernoulli 12, 633–661.