generateDynppsbm(intens, Time, n, prop.groups, directed =TRUE)
Arguments
intens: List containing intensity functions α(q,l) and upper bounds of intensities
Time: Final time
n: Total number of nodes
prop.groups: Vector of group proportions (probability to belong to a group), should be of length Q
directed: Boolean for directed (TRUE) or undirected (FALSE) case. If directed=TRUE then intens should be of length Q2 and if directed =FALSE then length Q∗(Q+1)/2
Returns
Simulated data, latent group variables and intensities α(q,l)
Examples
# Generate data from an undirected graph with n=10 individuals and Q=2 clusters# equal cluster proportionsprop.groups <- c(0.5,0.5)# 3 different intensity functions :intens <- list(NULL)intens[[1]]<- list(intens=function(x)100*x*exp(-8*x),max=5)# (q,l) = (1,1)intens[[2]]<- list(intens=function(x) exp(3*x)*(sin(6*pi*x-pi/2)+1)/2,max=13)# (q,l) = (1,2)intens[[3]]<- list(intens=function(x)8.1*(exp(-6*abs(x-1/2))-.049),max=8)# (q,l) = (2,2)# generate data :obs <- generateDynppsbm(intens,Time=1,n=10,prop.groups,directed=FALSE)# latent variables (true clustering of the individuals)obs$z
# number of time events :length(obs$data$time.seq)# number of interactions between each pair of individuals:table(obs$data$type.seq)
References
ANDERSEN, P. K., BORGAN, Ø., GILL, R. D. & KEIDING, N. (1993). Statistical models based on counting processes. Springer Series in Statistics. Springer-Verlag, New York.
DAUDIN, J.-J., PICARD, F. & ROBIN, S. (2008). A mixture model for random graphs. Statist. Comput. 18, 173–183.
MATIAS, C., REBAFKA, T. & VILLERS, F. (2018). A semiparametric extension of the stochastic block model for longitudinal networks. Biometrika.
MATIAS, C. & ROBIN, S. (2014). Modeling heterogeneity in random graphs through latent space models: a selective review. Esaim Proc. & Surveys 47, 55–74.