modelSelection_Q function

Selects the number of groups with ICL

Selects the number of groups with ICL

Selects the number of groups with Integrated Classification Likelihood Criterion

modelSelection_Q(data, n, Qmin = 1, Qmax, directed = TRUE, sparse = FALSE, sol.hist.sauv)

Arguments

  • data: List with 2 components:

    • Time[0,dataTime - [0,dataTime] is the total time interval of observation
    • NijkdatamatrixwiththestatisticsperprocessNijk - data matrix with the statistics per process N_{ij}andsubintervalsand sub-intervalsk$
  • n: Total number of nodes nn

  • Qmin: Minimum number of groups

  • Qmax: Maximum number of groups

  • directed: Boolean for directed (TRUE) or undirected (FALSE) case

  • sparse: Boolean for sparse (TRUE) or not sparse (FALSE) case

  • sol.hist.sauv: List of size Qmax-Qmin+1 obtained from running mainVEM(data,n,Qmin,Qmax,method='hist')

Examples

# load data of a synthetic graph with 50 individuals and 3 clusters n <- 50 # compute data matrix with precision d_max=3 Dmax <- 2^3 data <- list(Nijk=statistics(generated_Q3$data,n,Dmax,directed=FALSE), Time=generated_Q3$data$Time) # ICL-model selection sol.selec_Q <- modelSelection_Q(data,n,Qmin=1,Qmax=4,directed=FALSE, sparse=FALSE,generated_sol_hist) # best number Q of clusters: sol.selec_Q$Qbest

References

BIERNACKI, C., CELEUX, G. & GOVAERT, G. (2000). Assessing a mixture model for clustering with the integrated completed likelihood. IEEE Trans. Pattern Anal. Machine Intel. 22, 719–725.

CORNELI, M., LATOUCHE, P. & ROSSI, F. (2016). Exact ICL maximization in a non-stationary temporal extension of the stochastic block model for dynamic networks. Neurocomputing 192, 81 – 91.

DAUDIN, J.-J., PICARD, F. & ROBIN, S. (2008). A mixture model for random graphs. Statist. Comput. 18, 173–183.

MATIAS, C., REBAFKA, T. & VILLERS, F. (2018). A semiparametric extension of the stochastic block model for longitudinal networks. Biometrika.