tauInitial function

List of initial values for τ\tau

List of initial values for τ\tau

Same function whatever directed or undirected case

tauInitial(data, n, Q, d_part, n_perturb, perc_perturb, n_random, directed)

Arguments

  • data: Data : only needs the NijkN_{ijk} field of data

  • n: Total number of nodes

  • Q: Total number of groups

  • d_part: Maximal level for finest partitions of time interval [0,T], used for kmeans initializations.

    • Algorithm takes partition up to depth 2d2^d with d=1,...,dpartd=1,...,d_{part}
    • Explore partitions [0,T],[0,T/2],[T/2,T],...[0,T/2d],...[(2d1)T/2d,T][0,T], [0,T/2], [T/2,T], ... [0,T/2^d], ...[(2^d-1)T/2^d,T]
    • Total number of partitions npart=2(dpart+1)1npart= 2^{(d_part +1)} - 1
  • n_perturb: Number of different perturbations on k-means result

  • perc_perturb: Percentage of labels that are to be perturbed (= randomly switched)

  • n_random: Number of completely random initial points. If not zero there will be n_random taus uniformly sampled in the initialization.

  • directed: Boolean for directed (TRUE) or undirected (FALSE) case

Returns

List of matrixes of initial values for τ\tau

Details

The (maximal) total number of initializations is dpart(1+nperturb)+nrandomd_{part}*(1+n_{perturb}) + n_{random}

Examples

# Generate initial tau for generated_Q3 data n <- 50 Dmax <- 2^3 Q <- 3 d_part <- 1 # less than 3 (owing to Dmax) n_perturb <- 2 perc_perturb <- 0.2 n_random <- 1 directed <- FALSE data <- list(Nijk = statistics(generated_Q3$data, n, Dmax, directed = FALSE)) tau <- tauInitial(data,n,Q,d_part,n_perturb,perc_perturb,n_random,directed)