cal_plot_regression function

Regression calibration plots

Regression calibration plots

A scatter plot of the observed and predicted values is computed where the axes are the same. When smooth = TRUE, a generalized additive model fit is shown. If the predictions are well calibrated, the fitted curve should align with the diagonal line.

cal_plot_regression(.data, truth = NULL, estimate = NULL, smooth = TRUE, ...) ## S3 method for class 'data.frame' cal_plot_regression( .data, truth = NULL, estimate = NULL, smooth = TRUE, ..., .by = NULL ) ## S3 method for class 'tune_results' cal_plot_regression(.data, truth = NULL, estimate = NULL, smooth = TRUE, ...) ## S3 method for class 'grouped_df' cal_plot_regression(.data, truth = NULL, estimate = NULL, smooth = TRUE, ...)

Arguments

  • .data: An ungrouped data frame object containing a prediction column.
  • truth: The column identifier for the true results (numeric). This should be an unquoted column name.
  • estimate: The column identifier for the predictions. This should be an unquoted column name
  • smooth: A logical: should a smoother curve be added.
  • ...: Additional arguments passed to ggplot2::geom_point().
  • .by: The column identifier for the grouping variable. This should be a single unquoted column name that selects a qualitative variable for grouping. Default to NULL. When .by = NULL no grouping will take place.

Returns

A ggplot object.

Examples

cal_plot_regression(boosting_predictions_oob, outcome, .pred) cal_plot_regression(boosting_predictions_oob, outcome, .pred, alpha = 1 / 6, cex = 3, smooth = FALSE ) cal_plot_regression(boosting_predictions_oob, outcome, .pred, .by = id, alpha = 1 / 6, cex = 3, smooth = FALSE )