A scatter plot of the observed and predicted values is computed where the axes are the same. When smooth = TRUE, a generalized additive model fit is shown. If the predictions are well calibrated, the fitted curve should align with the diagonal line.
cal_plot_regression(.data, truth =NULL, estimate =NULL, smooth =TRUE,...)## S3 method for class 'data.frame'cal_plot_regression( .data, truth =NULL, estimate =NULL, smooth =TRUE,..., .by =NULL)## S3 method for class 'tune_results'cal_plot_regression(.data, truth =NULL, estimate =NULL, smooth =TRUE,...)## S3 method for class 'grouped_df'cal_plot_regression(.data, truth =NULL, estimate =NULL, smooth =TRUE,...)
Arguments
.data: An ungrouped data frame object containing a prediction column.
truth: The column identifier for the true results (numeric). This should be an unquoted column name.
estimate: The column identifier for the predictions. This should be an unquoted column name
smooth: A logical: should a smoother curve be added.
...: Additional arguments passed to ggplot2::geom_point().
.by: The column identifier for the grouping variable. This should be a single unquoted column name that selects a qualitative variable for grouping. Default to NULL. When .by = NULL no grouping will take place.