interp.median function

Find the interpolated sample median, quartiles, or specific quantiles for a vector, matrix, or data frame

Find the interpolated sample median, quartiles, or specific quantiles for a vector, matrix, or data frame

For data with a limited number of response categories (e.g., attitude items), it is useful treat each response category as range with width, w and linearly interpolate the median, quartiles, or any quantile value within the median response.

interp.median(x, w = 1,na.rm=TRUE) interp.quantiles(x, q = .5, w = 1,na.rm=TRUE) interp.quartiles(x,w=1,na.rm=TRUE) interp.boxplot(x,w=1,na.rm=TRUE) interp.values(x,w=1,na.rm=TRUE) interp.qplot.by(y,x,w=1,na.rm=TRUE,xlab="group",ylab="dependent", ylim=NULL,arrow.len=.05,typ="b",add=FALSE,...)

Arguments

  • x: input vector
  • q: quantile to estimate ( 0 < q < 1
  • w: category width
  • y: input vector for interp.qplot.by
  • na.rm: should missing values be removed
  • xlab: x label
  • ylab: Y label
  • ylim: limits for the y axis
  • arrow.len: length of arrow in interp.qplot.by
  • typ: plot type in interp.qplot.by
  • add: add the plot or not
  • ...: additional parameters to plotting function

Details

If the total number of responses is N, with median, M, and the number of responses at the median value, Nm >1, and Nb= the number of responses less than the median, then with the assumption that the responses are distributed uniformly within the category, the interpolated median is M - .5w + w*(N/2 - Nb)/Nm.

The generalization to 1st, 2nd and 3rd quartiles as well as the general quantiles is straightforward.

A somewhat different generalization allows for graphic presentation of the difference between interpolated and non-interpolated points. This uses the interp.values function.

If the input is a matrix or data frame, quantiles are reported for each variable.

Returns

  • im: interpolated median(quantile)

  • v: interpolated values for all data points

See Also

median

Examples

interp.median(c(1,2,3,3,3)) # compare with median = 3 interp.median(c(1,2,2,5)) interp.quantiles(c(1,2,2,5),.25) x <- sample(10,100,TRUE) interp.quartiles(x) # x <- c(1,1,2,2,2,3,3,3,3,4,5,1,1,1,2,2,3,3,3,3,4,5,1,1,1,2,2,3,3,3,3,4,2) y <- c(1,2,3,3,3,3,4,4,4,4,4,1,2,3,3,3,3,4,4,4,4,5,1,5,3,3,3,3,4,4,4,4,4) x <- x[order(x)] #sort the data by ascending order to make it clearer y <- y[order(y)] xv <- interp.values(x) yv <- interp.values(y) barplot(x,space=0,xlab="ordinal position",ylab="value") lines(1:length(x)-.5,xv) points(c(length(x)/4,length(x)/2,3*length(x)/4),interp.quartiles(x)) barplot(y,space=0,xlab="ordinal position",ylab="value") lines(1:length(y)-.5,yv) points(c(length(y)/4,length(y)/2,3*length(y)/4),interp.quartiles(y)) if(require(psychTools)) { data(psychTools::galton) galton <- psychTools::galton interp.median(galton) interp.qplot.by(galton$child,galton$parent,ylab="child height" ,xlab="Mid parent height") }