Find the interpolated sample median, quartiles, or specific quantiles for a vector, matrix, or data frame
Find the interpolated sample median, quartiles, or specific quantiles for a vector, matrix, or data frame
For data with a limited number of response categories (e.g., attitude items), it is useful treat each response category as range with width, w and linearly interpolate the median, quartiles, or any quantile value within the median response.
interp.median(x, w =1,na.rm=TRUE)interp.quantiles(x, q =.5, w =1,na.rm=TRUE)interp.quartiles(x,w=1,na.rm=TRUE)interp.boxplot(x,w=1,na.rm=TRUE)interp.values(x,w=1,na.rm=TRUE)interp.qplot.by(y,x,w=1,na.rm=TRUE,xlab="group",ylab="dependent", ylim=NULL,arrow.len=.05,typ="b",add=FALSE,...)
Arguments
x: input vector
q: quantile to estimate ( 0 < q < 1
w: category width
y: input vector for interp.qplot.by
na.rm: should missing values be removed
xlab: x label
ylab: Y label
ylim: limits for the y axis
arrow.len: length of arrow in interp.qplot.by
typ: plot type in interp.qplot.by
add: add the plot or not
...: additional parameters to plotting function
Details
If the total number of responses is N, with median, M, and the number of responses at the median value, Nm >1, and Nb= the number of responses less than the median, then with the assumption that the responses are distributed uniformly within the category, the interpolated median is M - .5w + w*(N/2 - Nb)/Nm.
The generalization to 1st, 2nd and 3rd quartiles as well as the general quantiles is straightforward.
A somewhat different generalization allows for graphic presentation of the difference between interpolated and non-interpolated points. This uses the interp.values function.
If the input is a matrix or data frame, quantiles are reported for each variable.
Returns
im: interpolated median(quantile)
v: interpolated values for all data points
See Also
median
Examples
interp.median(c(1,2,3,3,3))# compare with median = 3interp.median(c(1,2,2,5))interp.quantiles(c(1,2,2,5),.25)x <- sample(10,100,TRUE)interp.quartiles(x)#x <- c(1,1,2,2,2,3,3,3,3,4,5,1,1,1,2,2,3,3,3,3,4,5,1,1,1,2,2,3,3,3,3,4,2)y <- c(1,2,3,3,3,3,4,4,4,4,4,1,2,3,3,3,3,4,4,4,4,5,1,5,3,3,3,3,4,4,4,4,4)x <- x[order(x)]#sort the data by ascending order to make it clearery <- y[order(y)]xv <- interp.values(x)yv <- interp.values(y)barplot(x,space=0,xlab="ordinal position",ylab="value")lines(1:length(x)-.5,xv)points(c(length(x)/4,length(x)/2,3*length(x)/4),interp.quartiles(x))barplot(y,space=0,xlab="ordinal position",ylab="value")lines(1:length(y)-.5,yv)points(c(length(y)/4,length(y)/2,3*length(y)/4),interp.quartiles(y))if(require(psychTools)){data(psychTools::galton)galton <- psychTools::galton
interp.median(galton)interp.qplot.by(galton$child,galton$parent,ylab="child height",xlab="Mid parent height")}