qdap_df function

Create qdap Specific Data Structure

Create qdap Specific Data Structure

Creating this qdap specific data structure enables short hand with subsequent qdap function calls that utilize the text.var

argument. Combined with the %&% operator, the user n need not specify a data set or the text.var argument (as many qdap functions contain a text.var argument).

Change text.var column of a qdap_df object.

qdap_df(dataframe, text.var) Text(object) Text(object) <- value

Arguments

  • dataframe: A data.frame with a text variable. Generally, sentSplit should be run first (sentSplit actually produces a data.frame that is of the class "qdap_df").
  • text.var: The name of the text.var column.
  • object: A data.frame of the class "qdap_df".
  • value: A character string of the updated text.var column.

Returns

Returns a data.frame of the class "qdap_df".

Examples

## Not run: dat <- qdap_df(DATA, state) dat %&% trans_cloud(grouping.var=person) dat %&% trans_cloud(grouping.var=person, text.var=stemmer(DATA$state)) dat %&% termco(grouping.var=person, match.list=list("fun", "computer")) class(dat) ## Change text column in `qdap_df` (Example 1) dat2 <- sentSplit(DATA, "state", stem.col = TRUE) class(dat2) dat2 %&% trans_cloud() Text(dat2) ## change the `text.var` column Text(dat2) <- "stem.text" dat2 %&% trans_cloud() ## Change text column in `qdap_df` (Example 2) (dat2$fake_dat <- paste(emoticon[1:11,2], dat2$state)) Text(dat2) <- "fake_dat" (m <- dat2 %&% sub_holder(emoticon[,2])) m$unhold(strip(m$output)) ## Various examples with qdap functions dat <- sentSplit(DATA, "state") dat %&% trans_cloud(grouping.var=person) dat %&% termco(person, match.list=list("fun", "computer")) dat %&% trans_venn(person) dat %&% polarity(person) dat %&% formality(person) dat %&% automated_readability_index(person) dat %&% Dissimilarity(person) dat %&% gradient_cloud(sex) dat %&% dispersion_plot(c("fun", "computer")) dat %&% discourse_map(list(sex, adult)) dat %&% gantt_plot(person) dat %&% word_list(adult) dat %&% end_mark_by(person) dat %&% end_mark() dat %&% word_stats(person) dat %&% wfm(person) dat %&% word_cor(person, "i") dat %&% sentCombine(person) dat %&% question_type(person) dat %&% word_network_plot() dat %&% character_count() dat %&% char_table(person) dat %&% phrase_net(2, .1) dat %&% boolean_search("it||!") dat %&% trans_context(person, which(end_mark(DATA.SPLIT[, "state"]) == "?")) dat %&% mgsub(c("it's", "I'm"), c("it is", "I am")) ## combine with magrittr/dplyr chaining dat %&% wfm(person) %>% plot() dat %&% polarity(person) %>% scores() dat %&% polarity(person) %>% counts() dat %&% polarity(person) %>% scores() dat %&% polarity(person) %>% scores() %>% plot() dat %&% polarity(person) %>% scores %>% plot ## End(Not run)

References

Inspired by dplyr's tbl_df structure.

See Also

%&%, sentSplit

  • Maintainer: Tyler Rinker
  • License: GPL-2
  • Last published: 2023-05-11