ModelDev function

Feature Selection and Model Building

Feature Selection and Model Building

Utilties to help build models, both in specific applications such as time series and text analysis, and in general tools..

qeCompare(data,yName,qeFtnList,nReps,opts=NULL,seed=9999) qeFT(data,yName,qeftn,pars,nCombs,nTst,nXval,showProgress=TRUE) qeText(data,yName,kTop=50,stopWords=tm::stopwords("english"), qeName,opts=NULL,holdout=floor(min(1000,0.1*nrow(data)))) qeTS(lag,data,qeName,opts=NULL,holdout=floor(min(1000,0.1*length(data)))) ## S3 method for class 'qeText' predict(object,newDocs,...) ## S3 method for class 'qeTS' predict(object,newx,...)

Arguments

  • ...: Further arguments.
  • object: Object returned by a qe-series function.
  • newx: New data to be predicted.
  • newDocs: Vector of new documents to be predicted.
  • lag: number of recent values to use in predicting the next.
  • qeName: Name of qe-series predictive function, e.g. 'qeRF'.
  • stopWords: Stop lists to use.
  • nTst: Number of parameter combinations.
  • kTop: Number of most-frequent words to use.
  • data: Dataframe, training set. Classification case is signaled via labels column being an R factor.
  • yName: Name of the class labels column.
  • holdout: If not NULL, form a holdout set of the specified size. After fitting to the remaining data, evaluate accuracy on the test set.
  • qeFtnList: Character vector of qe* function names.
  • nReps: Number of holdout sets to generate.
  • opts: R list of optional arguments for none, some or all of th functions in qeFtnList.
  • seed: Seed for random number generation.
  • qeftn: Quoted string, specifying the name of a qe-series machine learning method.
  • pars: R list of hyperparameter ranges. See regtools::fineTuning.
  • nCombs: Number of hyperparameter combinations to run. See regtools::fineTuning.
  • nXval: Number of cross-validations to run. See regtools::fineTuning.
  • showProgress: If TRUE, show results as they arise. See regtools::fineTuning.

Details

Overviews of the functions:

  • qeTs is a tool for time series modeling
  • qeText is a tool for textual modeling
  • qeCompare facilitates comparison among models
  • qeFT does a random grid search for optimal hyperparameter values

Examples

data(mlb1) # predict Weight in the mlb1 dataset, using qeKNN, with k = 5 and 25, # with 10 cross-validations qeFT(mlb1,'Weight','qeKNN',list(k=c(5,25)),nTst=100,nXval=10)

Author(s)

Norm Matloff

  • Maintainer: Norm Matloff
  • License: GPL (>= 2)
  • Last published: 2023-11-09