x: vector of length n containing the data (typically log-returns) to be fitted a GARCH(1,1) to.
init: vector of length 2 giving the initial values for the likelihood fitting. Note that these are initial values for z[corr] and z[ema]
as in Zumbach (2000).
sig2: annualized variance (third parameter of the reparameterization according to Zumbach (2000)).
delta: unit of time (defaults to 1 meaning daily data; for yearly data, use 250).
distr: character string specifying the innovation distribution ("norm" for N(0,1) or "st" for a standardized t
distribution).
control: see ?optim().
innovations: random variates from the innovation distribution; for example, obtained via rnorm() or rt(, df = nu) * sqrt((nu-2)/nu) where nu are the d.o.f. of the t distribution.
interval: initial interval for computing the tail index; passed to the underlying uniroot().
...: - fit_GARCH_11():: additional arguments passed to the underlying optim().
tail_index_GARCH_11():: additional arguments passed to the underlying uniroot().
Returns
fit_GARCH_11():: - coef:: estimated coefficients alpha[0], alpha[1], beta[1] and, if distr = "st" the estimated degrees of freedom.
- logLik:: maximized log-likelihood.
- counts:: number of calls to the objective function; see ?optim.
- convergence:: convergence code ('0' indicates successful completion); see ?optim.
- message:: see ?optim.
- sig.t:: vector of length n giving the conditional volatility.
- Z.t:: vector of length n giving the standardized residuals.
tail_index_GARCH_11():: The tail index alpha estimated by Monte Carlo via McNeil et al. (2015, p. 576), so the alpha which solves
E((α1Z2+β1)α/2)=1
, where Z are the innovations. If no solution is found (e.g. if the objective function does not have different sign at the endpoints of interval), NA is returned.
Author(s)
Marius Hofert
References
Zumbach, G. (2000). The pitfalls in fitting GARCH (1,1) processes. Advances in Quantitative Asset Management 1 , 179--200.
McNeil, A. J., Frey, R. and Embrechts, P. (2015). Quantitative Risk Management: Concepts, Techniques, Tools. Princeton University Press.
See Also
fit_ARMA_GARCH() based on rugarch.
Examples
### Example 1: N(0,1) innovations ################################################ Generate data from a GARCH(1,1) with N(0,1) innovationslibrary(rugarch)uspec <- ugarchspec(variance.model = list(model ="sGARCH", garchOrder = c(1,1)), distribution.model ="norm", mean.model = list(armaOrder = c(0,0)), fixed.pars = list(mu =0, omega =0.1,# alpha_0 alpha1 =0.2,# alpha_1 beta1 =0.3))# beta_1X <- ugarchpath(uspec, n.sim =1e4, rseed =271)# sample (set.seed() fails!)X.t <- as.numeric(X@path$seriesSim)# actual path (X_t)## Fitting via ugarchfit()uspec. <- ugarchspec(variance.model = list(model ="sGARCH", garchOrder = c(1,1)), distribution.model ="norm", mean.model = list(armaOrder = c(0,0)))fit <- ugarchfit(uspec., data = X.t)coef(fit)# fitted mu, alpha_0, alpha_1, beta_1Z <- fit@fit$z # standardized residualsstopifnot(all.equal(mean(Z),0, tol =1e-2), all.equal(var(Z),1, tol =1e-3))## Fitting via fit_GARCH_11()fit. <- fit_GARCH_11(X.t)fit.$coef # fitted alpha_0, alpha_1, beta_1Z. <- fit.$Z.t # standardized residualsstopifnot(all.equal(mean(Z.),0, tol =5e-3), all.equal(var(Z.),1, tol =1e-3))## Comparestopifnot(all.equal(fit.$coef, coef(fit)[c("omega","alpha1","beta1")], tol =5e-3, check.attributes =FALSE))# fitted coefficientssummary(Z. - Z)# standardized residuals### Example 2: t_nu(0, (nu-2)/nu) innovations #################################### Generate data from a GARCH(1,1) with t_nu(0, (nu-2)/nu) innovationsuspec <- ugarchspec(variance.model = list(model ="sGARCH", garchOrder = c(1,1)), distribution.model ="std", mean.model = list(armaOrder = c(0,0)), fixed.pars = list(mu =0, omega =0.1,# alpha_0 alpha1 =0.2,# alpha_1 beta1 =0.3,# beta_1 shape =4))# nuX <- ugarchpath(uspec, n.sim =1e4, rseed =271)# sample (set.seed() fails!)X.t <- as.numeric(X@path$seriesSim)# actual path (X_t)## Fitting via ugarchfit()uspec. <- ugarchspec(variance.model = list(model ="sGARCH", garchOrder = c(1,1)), distribution.model ="std", mean.model = list(armaOrder = c(0,0)))fit <- ugarchfit(uspec., data = X.t)coef(fit)# fitted mu, alpha_0, alpha_1, beta_1, nuZ <- fit@fit$z # standardized residualsstopifnot(all.equal(mean(Z),0, tol =1e-2), all.equal(var(Z),1, tol =5e-2))## Fitting via fit_GARCH_11()fit. <- fit_GARCH_11(X.t, distr ="st")c(fit.$coef, fit.$df)# fitted alpha_0, alpha_1, beta_1, nuZ. <- fit.$Z.t # standardized residualsstopifnot(all.equal(mean(Z.),0, tol =2e-2), all.equal(var(Z.),1, tol =2e-2))## Comparefit.coef <- coef(fit)[c("omega","alpha1","beta1","shape")]fit..coef <- c(fit.$coef, fit.$df)stopifnot(all.equal(fit.coef, fit..coef, tol =7e-2, check.attributes =FALSE))summary(Z. - Z)# standardized residuals