Conduct NL and N permutation tests
Conduct NL and N permutation tests.
hotperm(cross, n.quant, n.perm, lod.thrs, alpha.levels, drop.lod = 1.5, window = NULL, verbose = FALSE, init.seed = 0, addcovar = NULL, intcovar = NULL, ...) data(hotperm1) ## S3 method for class 'hotperm' print(x, ...) ## S3 method for class 'hotperm' summary(object, quant.levels, ...) ## S3 method for class 'hotperm' quantile(x, probs, ..., lod.thr = NULL) ## S3 method for class 'summary.hotperm' print(x, ...)
cross
: object of class cross
n.quant
: maximum of s.quant
n.perm
: number of permutationslod.thrs
: vector of LOD thresholdsalpha.levels
: vector of significance levelsquant.levels
: quantile levels, as number of traits, to show in summary; default is 1, 2, 5, 10, ...
up to maximum recordeddrop.lod
: LOD drop amount for support intervalswindow
: window size for smoothed hotspot sizeverbose
: verbose output if TRUE
init.seed
: initial seed for pseudo-random number generationx,object
: object of class hotperm
or summary.hotperm
probs
: probability levels for quantiles (1-probs
if all > 0.5); default is alpha.levels
lod.thr
: restrict to values above this if not NULL
addcovar
: additive covariates as vector or matrix; see scanone
intcovar
: interactive covariates as vector or matrix; see scanone
...
: arguments passed along to scanone
Elias Chaibub Neto and Brian S Yandell
example(include.hotspots) set.seed(123) pt <- scanone(ncross1, method = "hk", n.perm = 1000) alphas <- seq(0.01, 0.10, by=0.01) lod.thrs <- summary(pt, alphas) ## Not run: ## This takes awhile, so we save the object. set.seed(12345) hotperm1 <- hotperm(cross = cross1, n.quant = 300, n.perm = 100, lod.thrs = lod.thrs, alpha.levels = alphas, drop.lod = 1.5, verbose = FALSE) save(hotperm1, file = "hotperm1.RData", compress = TRUE) ## End(Not run) summary(hotperm1)