cmp_R2 function

Compute R2 with a specified C matrix

Compute R2 with a specified C matrix

cmp_R2(c, x, SigHat, beta, method, obsperclust = NULL, nclusts = NULL)

Arguments

  • c: Contrast matrix for fixed effects
  • x: Fixed effects design matrix
  • SigHat: estimated model covariance (matrix or scalar)
  • beta: fixed effects estimates
  • method: the method for computing r2beta
  • obsperclust: number of observations per cluster (i.e. subject)
  • nclusts: number of clusters (i.e. subjects)

Returns

A vector with the Wald statistic (ncp), approximate Wald F statistic (F), numerator degrees of freedom (v1), denominator degrees of freedom (v2), and the specified r squared value (Rsq)

Examples

library(nlme) library(lme4) library(mgcv) lmemod = lme(distance ~ age*Sex, random = ~1|Subject, data = Orthodont) X = model.matrix(lmemod, data = Orthodont) SigHat = extract.lme.cov(lmemod, data = Orthodont) beta = fixef(lmemod) p = length(beta) obsperclust = as.numeric(table(lmemod$data[,'Subject'])) nclusts = length(obsperclust) C = cbind(rep(0, p-1),diag(p-1)) partial.c = make.partial.C(p-1,p,2) cmp_R2(c=C, x=X, SigHat=SigHat, beta=beta, obsperclust = obsperclust, nclusts = nclusts, method = 'sgv') cmp_R2(c=partial.c, x=X, SigHat=SigHat, beta=beta, obsperclust = obsperclust, nclusts = nclusts, method = 'sgv')
  • Maintainer: Byron Jaeger
  • License: GPL-2
  • Last published: 2017-08-05