rMVP1.3.0 package

Memory-Efficient, Visualize-Enhanced, Parallel-Accelerated GWAS Tool

MVP.BRENT.Vg.Ve

MVP.BRENT.Vg.Ve variance component estimation using the BRENT method

MVP.Data.Bfile2MVP

MVP.Data.Bfile2MVP: To transform plink binary data to MVP package Auth...

MVP.Data.Hapmap2MVP

MVP.Data.Hapmap2MVP: To transform Hapmap data to MVP package Author: H...

MVP.Data.impute

MVP.Data.impute: To impute the missing genotype Author: Haohao Zhang B...

MVP.Data.Kin

Kinship

MVP.Data.Map

MVP.Data.Map: To check map file Author: Haohao Zhang Build date: Sep 1...

MVP.Data.MVP2Bfile

MVP.Data.MVP2Bfile: To transform MVP data to binary format Author: Hao...

MVP.EMMA.Vg.Ve

Estimate variance components using EMMA

MVP.FarmCPU

Perform GWAS using FarmCPU method

MVP.FaSTLMM.LL

Evaluation of the maximum likelihood using FaST-LMM method

MVP.PCA

Principal Component Analysis

MVP.Data.Numeric2MVP

MVP.Data.Numeric2MVP: To transform Numeric data to MVP package Author:...

MVP.Data.PC

Principal component analysis

MVP.Data.Pheno

MVP.Data.Pheno: To clean up phenotype file Author: Haohao Zhang Build ...

MVP.Data

MVP.Data: To prepare data for MVP package

MVP.Data.VCF2MVP

MVP.Data.VCF2MVP: To transform vcf data to MVP package Author: Haohao ...

MVP.GLM

To perform GWAS with GLM and MLM model and get the P value of SNPs

MVP.HE.Vg.Ve

To estimate variance component using HE regression

MVP.Hist

Phenotype distribution histogram

MVP.K.VanRaden

Calculate Kinship matrix by VanRaden method

MVP.MLM

To perform GWAS with GLM and MLM model and get the P value of SNPs

MVP.PCAplot

PCA Plot

MVP

MVP, Memory-efficient, Visualization-enhanced, Parallel-accelerated

MVP.Report.Density

SNP Density

MVP.Report.QQplot

QQ Plot

MVP.Report

MVP.Report

MVP.Version

Print MVP Banner

reexports

Objects exported from other packages

A memory-efficient, visualize-enhanced, parallel-accelerated Genome-Wide Association Study (GWAS) tool. It can (1) effectively process large data, (2) rapidly evaluate population structure, (3) efficiently estimate variance components several algorithms, (4) implement parallel-accelerated association tests of markers three methods, (5) globally efficient design on GWAS process computing, (6) enhance visualization of related information. 'rMVP' contains three models GLM (Alkes Price (2006) <DOI:10.1038/ng1847>), MLM (Jianming Yu (2006) <DOI:10.1038/ng1702>) and FarmCPU (Xiaolei Liu (2016) <doi:10.1371/journal.pgen.1005767>); variance components estimation methods EMMAX (Hyunmin Kang (2008) <DOI:10.1534/genetics.107.080101>;), FaSTLMM (method: Christoph Lippert (2011) <DOI:10.1038/nmeth.1681>, R implementation from 'GAPIT2': You Tang and Xiaolei Liu (2016) <DOI:10.1371/journal.pone.0107684> and 'SUPER': Qishan Wang and Feng Tian (2014) <DOI:10.1371/journal.pone.0107684>), and HE regression (Xiang Zhou (2017) <DOI:10.1214/17-AOAS1052>).

  • Maintainer: Xiaolei Liu
  • License: Apache License 2.0
  • Last published: 2024-12-17