rRAP-package

Real-Time Adaptive Penalization for Streaming Lasso Models

Real-Time Adaptive Penalization for Streaming Lasso Models

This package provides an implementation of the Real-time adaptive penalization (RAP) algorithm through which to iteratively update a regularization parameter in a streaming context. package

Details

Package:rRAP
Type:Package
Version:1.0
Date:2016-09-29
License:GPL-2

Author(s)

Ricardo Pio Monti Maintainer: Ricardo Pio Monti ricardo.monti08@gmail.com

References

See Monti et al, "A framework for adaptive regularization in streaming Lasso models", 2016

See Also

RAP, update.RAP, predict.RAP

Examples

# Recreate Figure 1 from Monti et al 2016 library(lars) data(diabetes) Data = cbind(diabetes$y, diabetes$x) # initialize RAP object R = RAP(X = matrix(diabetes$x[1,], nrow=1), y = diabetes$y[1], r = .995, eps = 0.0005, l0 = .1) # iteratively update: ## Not run: for (i in 2:nrow(Data)){ R = update.RAP(RAPobj=R, Ynew = diabetes$y[i], Xnew=matrix(diabetes$x[i,], nrow=1)) } ## End(Not run)
  • Maintainer: Ricardo Pio Monti
  • License: GPL-2
  • Last published: 2016-10-31

Useful links