Describe what features are the most important for one specifically class (in case of classification) or explain features that are affecting, the most, variability of the response (for regression), either for train or test sample.
X: a matrix or data frame specifying test (or train) data.
object: an object of class importance.
whichClass: for classification only. The index of the class that needs to be computed.
threshold: for regression only. The threshold point. Partial importance will compute importance below or above this point (see below).
thresholdDirection: where importance does it need to be fitted ? "low" will be lower than 'threshold' and "high" will be above.
border: visualization option. Draw border around barplots ?
nLocalFeatures: how many features does it need to be assessed ?
Details
Partial importance must be used in conjunction with importance object, since it explains what features have influence on a class (or on the variability of the response) but not how (that can be lower, higher or all values of one or many features). Partial Importance produces final (and local) rules that lead to the decision (observed or predicted class, observed or predicted value in cas of regression).
Returns
A vector containing relative influence of the most important features in a decreasing order.