Fit A Mixture of Distance-based Models
RankDistanceModel
fits ranking models based on inputs
RankDistanceModel(dat, init, ctrl)
dat
: A RankData object.init
: A RankInit object.ctrl
: A RankControl object.A list containing the following components:
modal_ranking.est
: the estimated modal ranking for each cluster.p
: the marginal probability of each cluster.w.est
: the estimated weights of each cluster.param.est
: the phi parametrisation of weights of each cluster (for Weighted Kendall model only).SSR
: the sum of squares of Pearson residualslog_likelihood
: the fitted log_likelihoodBIC
: the fitted Bayesian Information Criterion valuefree_params
: the number of free parameters in the modelexpectation
: the expected value of each observation given by the modeliteration
: the number of EM iterationmodel.call
: the function callThe procedure will estimate central rankings, the probability of each cluster and weights.
RankData
, RankInit
, RankControl
Useful links