Make a RasterLayer with interpolated values using a fitted model object of classes such as 'gstat' (gstat package) or 'Krige' (fields package). That is, these are models that have location ('x' and 'y', or 'longitude' and 'latitude') as independent variables. If x and y are the only independent variables provide an empty (no associated data in memory or on file) RasterLayer for which you want predictions. If there are more spatial predictor variables provide these as a Raster* object in the first argument of the function. If you do not have x and y locations as implicit predictors in your model you should use predict instead.
methods
fun: function. Default value is 'predict', but can be replaced with e.g. 'predict.se' (depending on the class of the model object)
xyOnly: logical. If TRUE, values of the Raster* object are not considered as co-variables; and only x and y (longitude and latitude) are used. This should match the model
xyNames: character. variable names that the model uses for the spatial coordinates. E.g., c('longitude', 'latitude')
ext: Extent object to limit the prediction to a sub-region of x
const: data.frame. Can be used to add a constant for which there is no Raster object for model predictions. This is particulary useful if the constant is a character-like factor value
index: integer. To select the column if 'predict.model' returns a matrix with multiple columns
na.rm: logical. Remove cells with NA values in the predictors before solving the model (and return NA for those cells). In most cases this will not affect the output. This option prevents errors with models that cannot handle NA values
debug.level: for gstat models only. See ?
...: additional arguments passed to the predict.'model' function
Returns
Raster* object
See Also
predict, predict.gstat, Tps
Examples
## Thin plate spline interpolation with x and y only# some example datar <- raster(system.file("external/test.grd", package="raster"))ra <- aggregate(r,10)xy <- data.frame(xyFromCell(ra,1:ncell(ra)))v <- getValues(ra)# remove NAsi <-!is.na(v)xy <- xy[i,]v <- v[i]#### Thin plate spline modellibrary(fields)tps <- Tps(xy, v)p <- raster(r)# use model to predict values at all locationsp <- interpolate(p, tps)p <- mask(p, r)plot(p)## change the fun from predict to fields::predictSE to get the TPS standard errorse <- interpolate(p, tps, fun=predictSE)se <- mask(se, r)plot(se)## another variable; let's call it elevationelevation <-(init(r,'x')* init(r,'y'))/100000000names(elevation)<-'elev'z <- extract(elevation, xy)# add as another independent variablexyz <- cbind(xy, z)tps2 <- Tps(xyz, v)p2 <- interpolate(elevation, tps2, xyOnly=FALSE)# as a linear coveriatetps3 <- Tps(xy, v, Z=z)# Z is a separate argument in Krig.predict, so we need a new function# Internally (in interpolate) a matrix is formed of x, y, and elev (Z)pfun <-function(model, x,...){ predict(model, x[,1:2], Z=x[,3],...)}p3 <- interpolate(elevation, tps3, xyOnly=FALSE, fun=pfun)#### gstat exampleslibrary(gstat)data(meuse)## inverse distance weighted (IDW)r <- raster(system.file("external/test.grd", package="raster"))data(meuse)mg <- gstat(id ="zinc", formula = zinc~1, locations =~x+y, data=meuse, nmax=7, set=list(idp =.5))z <- interpolate(r, mg)z <- mask(z, r)## krigingcoordinates(meuse)<-~x+y
crs(meuse)<- crs(r)## ordinary krigingv <- variogram(log(zinc)~1, meuse)m <- fit.variogram(v, vgm(1,"Sph",300,1))gOK <- gstat(NULL,"log.zinc", log(zinc)~1, meuse, model=m)OK <- interpolate(r, gOK)# examples below provided by Maurizio Marchi## universial krigingvu <- variogram(log(zinc)~elev, meuse)mu <- fit.variogram(vu, vgm(1,"Sph",300,1))gUK <- gstat(NULL,"log.zinc", log(zinc)~elev, meuse, model=mu)names(r)<-'elev'UK <- interpolate(r, gUK, xyOnly=FALSE)## co-kriginggCoK <- gstat(NULL,'log.zinc', log(zinc)~1, meuse)gCoK <- gstat(gCoK,'elev', elev~1, meuse)gCoK <- gstat(gCoK,'cadmium', cadmium~1, meuse)gCoK <- gstat(gCoK,'copper', copper~1, meuse)coV <- variogram(gCoK)plot(coV, type='b', main='Co-variogram')coV.fit <- fit.lmc(coV, gCoK, vgm(model='Sph', range=1000))coV.fit
plot(coV, coV.fit, main='Fitted Co-variogram')coK <- interpolate(r, coV.fit)plot(coK)