Scatter plot matrices of Raster objects.
Draw conditional scatter plot matrices with hexagonally binning. methods
## S4 method for signature 'Raster,missing' splom(x, data=NULL,maxpixels=1e5, plot.loess=FALSE, colramp=BTC, varname.cex=0.6,...) ## S4 method for signature 'SpatRaster,missing' splom(x, data=NULL,maxpixels=1e5, plot.loess=FALSE, colramp=BTC, varname.cex=0.6,...)
x
: A Raster
or a SpatRaster
object.data
: Not used.maxpixels
: A numeric, for sampleRandom
or spatSample
.plot.loess
: Logical, should a loess fit be drawn?.colramp
: A function accepting an integer n
as argument and returning n
colors (for hexbinplot
).varname.cex
: A numerical multiplier to control the size of the variables names....
: Additional arguments for splom.Oscar Perpiñán Lamigueiro
While the hexagonal binning is quite fast for large datasets, the use of the loess
fit will slow this function.
hexbinplot
, splom
## Not run: library(raster) library(terra) dataURL <- "https://raw.github.com/oscarperpinan/bookvis/master/data/" ##Solar irradiation data from CMSAF http://dx.doi.org/10.5676/EUM_SAF_CM/RAD_MVIRI/V001 old <- setwd(tempdir()) download.file(paste0(dataURL, "SISmm2008_CMSAF.zip"), "SISmm2008_CMSAF.zip", method='wget') unzip("SISmm2008_CMSAF.zip") listFich <- dir(pattern='\\.nc') stackSIS <- stack(listFich) stackSIS <- stackSIS*24 ##from irradiance (W/m2) to irradiation Wh/m2 setwd(old) idx <- seq(as.Date('2008-01-15'), as.Date('2008-12-15'), 'month') SISmm <- setZ(stackSIS, idx) names(SISmm) <- month.abb splom(SISmm) ## End(Not run)
Useful links